ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssvancl1 GIF version

Theorem lssvancl1 13999
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.)
Hypotheses
Ref Expression
lssvancl.v 𝑉 = (Base‘𝑊)
lssvancl.p + = (+g𝑊)
lssvancl.s 𝑆 = (LSubSp‘𝑊)
lssvancl.w (𝜑𝑊 ∈ LMod)
lssvancl.u (𝜑𝑈𝑆)
lssvancl.x (𝜑𝑋𝑈)
lssvancl.y (𝜑𝑌𝑉)
lssvancl.n (𝜑 → ¬ 𝑌𝑈)
Assertion
Ref Expression
lssvancl1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem lssvancl1
StepHypRef Expression
1 lssvancl.n . 2 (𝜑 → ¬ 𝑌𝑈)
2 lssvancl.w . . . . . 6 (𝜑𝑊 ∈ LMod)
3 lmodabl 13966 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
42, 3syl 14 . . . . 5 (𝜑𝑊 ∈ Abel)
5 lssvancl.u . . . . . 6 (𝜑𝑈𝑆)
6 lssvancl.x . . . . . 6 (𝜑𝑋𝑈)
7 lssvancl.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lssvancl.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
97, 8lsselg 13993 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑋𝑉)
102, 5, 6, 9syl3anc 1249 . . . . 5 (𝜑𝑋𝑉)
11 lssvancl.y . . . . 5 (𝜑𝑌𝑉)
12 lssvancl.p . . . . . 6 + = (+g𝑊)
13 eqid 2196 . . . . . 6 (-g𝑊) = (-g𝑊)
147, 12, 13ablpncan2 13522 . . . . 5 ((𝑊 ∈ Abel ∧ 𝑋𝑉𝑌𝑉) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
154, 10, 11, 14syl3anc 1249 . . . 4 (𝜑 → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
1615adantr 276 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) = 𝑌)
172adantr 276 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod)
185adantr 276 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈𝑆)
19 simpr 110 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈)
206adantr 276 . . . 4 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋𝑈)
2113, 8lssvsubcl 13998 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈𝑋𝑈)) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2217, 18, 19, 20, 21syl22anc 1250 . . 3 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g𝑊)𝑋) ∈ 𝑈)
2316, 22eqeltrrd 2274 . 2 ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌𝑈)
241, 23mtand 666 1 (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  -gcsg 13204  Abelcabl 13491  LModclmod 13919  LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-ring 13630  df-lmod 13921  df-lssm 13985
This theorem is referenced by:  lssvancl2  14000
  Copyright terms: Public domain W3C validator