![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssvancl1 | GIF version |
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.) |
Ref | Expression |
---|---|
lssvancl.v | ⊢ 𝑉 = (Base‘𝑊) |
lssvancl.p | ⊢ + = (+g‘𝑊) |
lssvancl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvancl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssvancl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssvancl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lssvancl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lssvancl.n | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lssvancl1 | ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvancl.n | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) | |
2 | lssvancl.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodabl 13610 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
5 | lssvancl.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | lssvancl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
7 | lssvancl.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lssvancl.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | lsselg 13637 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
10 | 2, 5, 6, 9 | syl3anc 1248 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | lssvancl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
12 | lssvancl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | eqid 2188 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 7, 12, 13 | ablpncan2 13215 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
15 | 4, 10, 11, 14 | syl3anc 1248 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
16 | 15 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
17 | 2 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod) |
18 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈 ∈ 𝑆) |
19 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈) | |
20 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
21 | 13, 8 | lssvsubcl 13642 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
22 | 17, 18, 19, 20, 21 | syl22anc 1249 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
23 | 16, 22 | eqeltrrd 2266 | . 2 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
24 | 1, 23 | mtand 666 | 1 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1363 ∈ wcel 2159 ‘cfv 5230 (class class class)co 5890 Basecbs 12479 +gcplusg 12554 -gcsg 12912 Abelcabl 13184 LModclmod 13563 LSubSpclss 13628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-addass 7930 ax-i2m1 7933 ax-0lt1 7934 ax-0id 7936 ax-rnegex 7937 ax-pre-ltirr 7940 ax-pre-ltadd 7944 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rmo 2475 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-1st 6158 df-2nd 6159 df-pnf 8011 df-mnf 8012 df-ltxr 8014 df-inn 8937 df-2 8995 df-3 8996 df-4 8997 df-5 8998 df-6 8999 df-ndx 12482 df-slot 12483 df-base 12485 df-sets 12486 df-plusg 12567 df-mulr 12568 df-sca 12570 df-vsca 12571 df-0g 12728 df-mgm 12797 df-sgrp 12830 df-mnd 12843 df-grp 12913 df-minusg 12914 df-sbg 12915 df-cmn 13185 df-abl 13186 df-mgp 13235 df-ur 13274 df-ring 13312 df-lmod 13565 df-lssm 13629 |
This theorem is referenced by: lssvancl2 13644 |
Copyright terms: Public domain | W3C validator |