![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssvancl1 | GIF version |
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. (Contributed by NM, 14-May-2015.) |
Ref | Expression |
---|---|
lssvancl.v | ⊢ 𝑉 = (Base‘𝑊) |
lssvancl.p | ⊢ + = (+g‘𝑊) |
lssvancl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvancl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssvancl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssvancl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lssvancl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lssvancl.n | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lssvancl1 | ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvancl.n | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) | |
2 | lssvancl.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodabl 13430 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
4 | 2, 3 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
5 | lssvancl.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | lssvancl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
7 | lssvancl.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lssvancl.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | lsselg 13454 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
10 | 2, 5, 6, 9 | syl3anc 1238 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | lssvancl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
12 | lssvancl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | eqid 2177 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 7, 12, 13 | ablpncan2 13125 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
15 | 4, 10, 11, 14 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
16 | 15 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
17 | 2 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod) |
18 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈 ∈ 𝑆) |
19 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈) | |
20 | 6 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
21 | 13, 8 | lssvsubcl 13459 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
22 | 17, 18, 19, 20, 21 | syl22anc 1239 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
23 | 16, 22 | eqeltrrd 2255 | . 2 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
24 | 1, 23 | mtand 665 | 1 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 +gcplusg 12539 -gcsg 12885 Abelcabl 13095 LModclmod 13383 LSubSpclss 13448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-plusg 12552 df-mulr 12553 df-sca 12555 df-vsca 12556 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-minusg 12887 df-sbg 12888 df-cmn 13096 df-abl 13097 df-mgp 13137 df-ur 13149 df-ring 13187 df-lmod 13385 df-lssm 13449 |
This theorem is referenced by: lssvancl2 13461 |
Copyright terms: Public domain | W3C validator |