ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltm1 Unicode version

Theorem ltm1 8624
Description: A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
Assertion
Ref Expression
ltm1  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )

Proof of Theorem ltm1
StepHypRef Expression
1 0lt1 7909 . . 3  |-  0  <  1
2 0re 7786 . . . 4  |-  0  e.  RR
3 1re 7785 . . . 4  |-  1  e.  RR
4 ltsub2 8241 . . . 4  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
0  <  1  <->  ( A  -  1 )  < 
( A  -  0 ) ) )
52, 3, 4mp3an12 1306 . . 3  |-  ( A  e.  RR  ->  (
0  <  1  <->  ( A  -  1 )  < 
( A  -  0 ) ) )
61, 5mpbii 147 . 2  |-  ( A  e.  RR  ->  ( A  -  1 )  <  ( A  - 
0 ) )
7 recn 7773 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
87subid1d 8082 . 2  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
96, 8breqtrd 3958 1  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1481   class class class wbr 3933  (class class class)co 5778   RRcr 7639   0cc0 7640   1c1 7641    < clt 7820    - cmin 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-addcom 7740  ax-addass 7742  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-0id 7748  ax-rnegex 7749  ax-cnre 7751  ax-pre-ltadd 7756
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-pnf 7822  df-mnf 7823  df-ltxr 7825  df-sub 7955  df-neg 7956
This theorem is referenced by:  lem1  8625  ltm1d  8710  qbtwnxr  10062  bcpasc  10540  arisum2  11296
  Copyright terms: Public domain W3C validator