ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltm1 Unicode version

Theorem ltm1 8242
Description: A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
Assertion
Ref Expression
ltm1  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )

Proof of Theorem ltm1
StepHypRef Expression
1 0lt1 7554 . . 3  |-  0  <  1
2 0re 7432 . . . 4  |-  0  e.  RR
3 1re 7431 . . . 4  |-  1  e.  RR
4 ltsub2 7881 . . . 4  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
0  <  1  <->  ( A  -  1 )  < 
( A  -  0 ) ) )
52, 3, 4mp3an12 1261 . . 3  |-  ( A  e.  RR  ->  (
0  <  1  <->  ( A  -  1 )  < 
( A  -  0 ) ) )
61, 5mpbii 146 . 2  |-  ( A  e.  RR  ->  ( A  -  1 )  <  ( A  - 
0 ) )
7 recn 7419 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
87subid1d 7726 . 2  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
96, 8breqtrd 3844 1  |-  ( A  e.  RR  ->  ( A  -  1 )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1436   class class class wbr 3820  (class class class)co 5613   RRcr 7293   0cc0 7294   1c1 7295    < clt 7466    - cmin 7597
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3932  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-addcom 7389  ax-addass 7391  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-0id 7397  ax-rnegex 7398  ax-cnre 7400  ax-pre-ltadd 7405
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-br 3821  df-opab 3875  df-id 4094  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-iota 4946  df-fun 4983  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-pnf 7468  df-mnf 7469  df-ltxr 7471  df-sub 7599  df-neg 7600
This theorem is referenced by:  lem1  8243  ltm1d  8328  qbtwnxr  9597  bcpasc  10070
  Copyright terms: Public domain W3C validator