ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  faccl Unicode version

Theorem faccl 10717
Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
Assertion
Ref Expression
faccl  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )

Proof of Theorem faccl
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5517 . . 3  |-  ( j  =  0  ->  ( ! `  j )  =  ( ! ` 
0 ) )
21eleq1d 2246 . 2  |-  ( j  =  0  ->  (
( ! `  j
)  e.  NN  <->  ( ! `  0 )  e.  NN ) )
3 fveq2 5517 . . 3  |-  ( j  =  k  ->  ( ! `  j )  =  ( ! `  k ) )
43eleq1d 2246 . 2  |-  ( j  =  k  ->  (
( ! `  j
)  e.  NN  <->  ( ! `  k )  e.  NN ) )
5 fveq2 5517 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( ! `  j )  =  ( ! `  ( k  +  1 ) ) )
65eleq1d 2246 . 2  |-  ( j  =  ( k  +  1 )  ->  (
( ! `  j
)  e.  NN  <->  ( ! `  ( k  +  1 ) )  e.  NN ) )
7 fveq2 5517 . . 3  |-  ( j  =  N  ->  ( ! `  j )  =  ( ! `  N ) )
87eleq1d 2246 . 2  |-  ( j  =  N  ->  (
( ! `  j
)  e.  NN  <->  ( ! `  N )  e.  NN ) )
9 fac0 10710 . . 3  |-  ( ! `
 0 )  =  1
10 1nn 8932 . . 3  |-  1  e.  NN
119, 10eqeltri 2250 . 2  |-  ( ! `
 0 )  e.  NN
12 facp1 10712 . . . . 5  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
1312adantl 277 . . . 4  |-  ( ( ( ! `  k
)  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
14 nn0p1nn 9217 . . . . 5  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
15 nnmulcl 8942 . . . . 5  |-  ( ( ( ! `  k
)  e.  NN  /\  ( k  +  1 )  e.  NN )  ->  ( ( ! `
 k )  x.  ( k  +  1 ) )  e.  NN )
1614, 15sylan2 286 . . . 4  |-  ( ( ( ! `  k
)  e.  NN  /\  k  e.  NN0 )  -> 
( ( ! `  k )  x.  (
k  +  1 ) )  e.  NN )
1713, 16eqeltrd 2254 . . 3  |-  ( ( ( ! `  k
)  e.  NN  /\  k  e.  NN0 )  -> 
( ! `  (
k  +  1 ) )  e.  NN )
1817expcom 116 . 2  |-  ( k  e.  NN0  ->  ( ( ! `  k )  e.  NN  ->  ( ! `  ( k  +  1 ) )  e.  NN ) )
192, 4, 6, 8, 11, 18nn0ind 9369 1  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818   NNcn 8921   NN0cn0 9178   !cfa 10707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-fac 10708
This theorem is referenced by:  faccld  10718  facne0  10719  facdiv  10720  facndiv  10721  facwordi  10722  faclbnd  10723  faclbnd2  10724  faclbnd3  10725  faclbnd6  10726  facubnd  10727  facavg  10728  bcrpcl  10735  bcn0  10737  bcm1k  10742  permnn  10753  4bc2eq6  10756  eftcl  11664  reeftcl  11665  eftabs  11666  ef0lem  11670  ege2le3  11681  efcj  11683  efaddlem  11684  effsumlt  11702  eflegeo  11711  ef01bndlem  11766  eirraplem  11786  dvdsfac  11868  prmfac1  12154  pcfac  12350  prmunb  12362
  Copyright terms: Public domain W3C validator