| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > faccl | Unicode version | ||
| Description: Closure of the factorial function. (Contributed by NM, 2-Dec-2004.) |
| Ref | Expression |
|---|---|
| faccl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 |
. . 3
| |
| 2 | 1 | eleq1d 2298 |
. 2
|
| 3 | fveq2 5627 |
. . 3
| |
| 4 | 3 | eleq1d 2298 |
. 2
|
| 5 | fveq2 5627 |
. . 3
| |
| 6 | 5 | eleq1d 2298 |
. 2
|
| 7 | fveq2 5627 |
. . 3
| |
| 8 | 7 | eleq1d 2298 |
. 2
|
| 9 | fac0 10950 |
. . 3
| |
| 10 | 1nn 9121 |
. . 3
| |
| 11 | 9, 10 | eqeltri 2302 |
. 2
|
| 12 | facp1 10952 |
. . . . 5
| |
| 13 | 12 | adantl 277 |
. . . 4
|
| 14 | nn0p1nn 9408 |
. . . . 5
| |
| 15 | nnmulcl 9131 |
. . . . 5
| |
| 16 | 14, 15 | sylan2 286 |
. . . 4
|
| 17 | 13, 16 | eqeltrd 2306 |
. . 3
|
| 18 | 17 | expcom 116 |
. 2
|
| 19 | 2, 4, 6, 8, 11, 18 | nn0ind 9561 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 df-fac 10948 |
| This theorem is referenced by: faccld 10958 facne0 10959 facdiv 10960 facndiv 10961 facwordi 10962 faclbnd 10963 faclbnd2 10964 faclbnd3 10965 faclbnd6 10966 facubnd 10967 facavg 10968 bcrpcl 10975 bcn0 10977 bcm1k 10982 permnn 10993 4bc2eq6 10996 eftcl 12165 reeftcl 12166 eftabs 12167 ef0lem 12171 ege2le3 12182 efcj 12184 efaddlem 12185 effsumlt 12203 eflegeo 12212 ef01bndlem 12267 eirraplem 12288 dvdsfac 12371 prmfac1 12674 pcfac 12873 prmunb 12885 |
| Copyright terms: Public domain | W3C validator |