ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmfac1 Unicode version

Theorem prmfac1 11866
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )

Proof of Theorem prmfac1
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5429 . . . . . 6  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
21breq2d 3949 . . . . 5  |-  ( x  =  0  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  0 )
) )
3 breq2 3941 . . . . 5  |-  ( x  =  0  ->  ( P  <_  x  <->  P  <_  0 ) )
42, 3imbi12d 233 . . . 4  |-  ( x  =  0  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 0 )  ->  P  <_  0 ) ) )
54imbi2d 229 . . 3  |-  ( x  =  0  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  0 )  ->  P  <_  0
) ) ) )
6 fveq2 5429 . . . . . 6  |-  ( x  =  k  ->  ( ! `  x )  =  ( ! `  k ) )
76breq2d 3949 . . . . 5  |-  ( x  =  k  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  k )
) )
8 breq2 3941 . . . . 5  |-  ( x  =  k  ->  ( P  <_  x  <->  P  <_  k ) )
97, 8imbi12d 233 . . . 4  |-  ( x  =  k  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) ) )
109imbi2d 229 . . 3  |-  ( x  =  k  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  k )  ->  P  <_  k
) ) ) )
11 fveq2 5429 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( ! `  x )  =  ( ! `  ( k  +  1 ) ) )
1211breq2d 3949 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  ( k  +  1 ) ) ) )
13 breq2 3941 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  <_  x  <->  P  <_  ( k  +  1 ) ) )
1412, 13imbi12d 233 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
16 fveq2 5429 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1716breq2d 3949 . . . . 5  |-  ( x  =  N  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  N )
) )
18 breq2 3941 . . . . 5  |-  ( x  =  N  ->  ( P  <_  x  <->  P  <_  N ) )
1917, 18imbi12d 233 . . . 4  |-  ( x  =  N  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 N )  ->  P  <_  N ) ) )
2019imbi2d 229 . . 3  |-  ( x  =  N  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  N )  ->  P  <_  N
) ) ) )
21 fac0 10506 . . . . 5  |-  ( ! `
 0 )  =  1
2221breq2i 3945 . . . 4  |-  ( P 
||  ( ! ` 
0 )  <->  P  ||  1
)
23 nprmdvds1 11856 . . . . 5  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
2423pm2.21d 609 . . . 4  |-  ( P  e.  Prime  ->  ( P 
||  1  ->  P  <_  0 ) )
2522, 24syl5bi 151 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  ( ! ` 
0 )  ->  P  <_  0 ) )
26 facp1 10508 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
2726adantr 274 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
2827breq2d 3949 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
P  ||  ( ( ! `  k )  x.  ( k  +  1 ) ) ) )
29 simpr 109 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  Prime )
30 faccl 10513 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3130adantr 274 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  NN )
3231nnzd 9196 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  ZZ )
33 nn0p1nn 9040 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3433adantr 274 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  NN )
3534nnzd 9196 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  ZZ )
36 euclemma 11860 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( ! `  k )  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( ! `
 k )  x.  ( k  +  1 ) )  <->  ( P  ||  ( ! `  k
)  \/  P  ||  ( k  +  1 ) ) ) )
3729, 32, 35, 36syl3anc 1217 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
( ! `  k
)  x.  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
3828, 37bitrd 187 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
39 nn0re 9010 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
4039adantr 274 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  e.  RR )
4140lep1d 8713 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  <_  ( k  +  1 ) )
42 prmz 11828 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
4342adantl 275 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  ZZ )
4443zred 9197 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  RR )
4534nnred 8757 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  RR )
46 letr 7871 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4744, 40, 45, 46syl3anc 1217 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4841, 47mpan2d 425 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  <_  k  ->  P  <_  ( k  +  1 ) ) )
4948imim2d 54 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  k
)  ->  P  <_  ( k  +  1 ) ) ) )
5049com23 78 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  k )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  P  <_  ( k  +  1 ) ) ) )
51 dvdsle 11578 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  NN )  ->  ( P  ||  ( k  +  1 )  ->  P  <_  ( k  +  1 ) ) )
5243, 34, 51syl2anc 409 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  P  <_  (
k  +  1 ) ) )
5352a1dd 48 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5450, 53jaod 707 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  \/  P  ||  (
k  +  1 ) )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5538, 54sylbid 149 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5655com23 78 . . . . 5  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  (
k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
5756ex 114 . . . 4  |-  ( k  e.  NN0  ->  ( P  e.  Prime  ->  ( ( P  ||  ( ! `
 k )  ->  P  <_  k )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
5857a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( P  e.  Prime  ->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) )  ->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
595, 10, 15, 20, 25, 58nn0ind 9189 . 2  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  ( P 
||  ( ! `  N )  ->  P  <_  N ) ) )
60593imp 1176 1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    <_ cle 7825   NNcn 8744   NN0cn0 9001   ZZcz 9078   !cfa 10503    || cdvds 11529   Primecprime 11824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672  df-prm 11825
This theorem is referenced by:  prmndvdsfaclt  11870
  Copyright terms: Public domain W3C validator