ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmfac1 Unicode version

Theorem prmfac1 12445
Description: The factorial of a number only contains primes less than the base. (Contributed by Mario Carneiro, 6-Mar-2014.)
Assertion
Ref Expression
prmfac1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )

Proof of Theorem prmfac1
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5575 . . . . . 6  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
21breq2d 4055 . . . . 5  |-  ( x  =  0  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  0 )
) )
3 breq2 4047 . . . . 5  |-  ( x  =  0  ->  ( P  <_  x  <->  P  <_  0 ) )
42, 3imbi12d 234 . . . 4  |-  ( x  =  0  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 0 )  ->  P  <_  0 ) ) )
54imbi2d 230 . . 3  |-  ( x  =  0  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  0 )  ->  P  <_  0
) ) ) )
6 fveq2 5575 . . . . . 6  |-  ( x  =  k  ->  ( ! `  x )  =  ( ! `  k ) )
76breq2d 4055 . . . . 5  |-  ( x  =  k  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  k )
) )
8 breq2 4047 . . . . 5  |-  ( x  =  k  ->  ( P  <_  x  <->  P  <_  k ) )
97, 8imbi12d 234 . . . 4  |-  ( x  =  k  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) ) )
109imbi2d 230 . . 3  |-  ( x  =  k  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  k )  ->  P  <_  k
) ) ) )
11 fveq2 5575 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( ! `  x )  =  ( ! `  ( k  +  1 ) ) )
1211breq2d 4055 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  ( k  +  1 ) ) ) )
13 breq2 4047 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  ( P  <_  x  <->  P  <_  ( k  +  1 ) ) )
1412, 13imbi12d 234 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
1514imbi2d 230 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
16 fveq2 5575 . . . . . 6  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1716breq2d 4055 . . . . 5  |-  ( x  =  N  ->  ( P  ||  ( ! `  x )  <->  P  ||  ( ! `  N )
) )
18 breq2 4047 . . . . 5  |-  ( x  =  N  ->  ( P  <_  x  <->  P  <_  N ) )
1917, 18imbi12d 234 . . . 4  |-  ( x  =  N  ->  (
( P  ||  ( ! `  x )  ->  P  <_  x )  <->  ( P  ||  ( ! `
 N )  ->  P  <_  N ) ) )
2019imbi2d 230 . . 3  |-  ( x  =  N  ->  (
( P  e.  Prime  -> 
( P  ||  ( ! `  x )  ->  P  <_  x )
)  <->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  N )  ->  P  <_  N
) ) ) )
21 fac0 10871 . . . . 5  |-  ( ! `
 0 )  =  1
2221breq2i 4051 . . . 4  |-  ( P 
||  ( ! ` 
0 )  <->  P  ||  1
)
23 nprmdvds1 12433 . . . . 5  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
2423pm2.21d 620 . . . 4  |-  ( P  e.  Prime  ->  ( P 
||  1  ->  P  <_  0 ) )
2522, 24biimtrid 152 . . 3  |-  ( P  e.  Prime  ->  ( P 
||  ( ! ` 
0 )  ->  P  <_  0 ) )
26 facp1 10873 . . . . . . . . . 10  |-  ( k  e.  NN0  ->  ( ! `
 ( k  +  1 ) )  =  ( ( ! `  k )  x.  (
k  +  1 ) ) )
2726adantr 276 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  (
k  +  1 ) )  =  ( ( ! `  k )  x.  ( k  +  1 ) ) )
2827breq2d 4055 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
P  ||  ( ( ! `  k )  x.  ( k  +  1 ) ) ) )
29 simpr 110 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  Prime )
30 faccl 10878 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
3130adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  NN )
3231nnzd 9493 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ! `  k
)  e.  ZZ )
33 nn0p1nn 9333 . . . . . . . . . . 11  |-  ( k  e.  NN0  ->  ( k  +  1 )  e.  NN )
3433adantr 276 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  NN )
3534nnzd 9493 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  ZZ )
36 euclemma 12439 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( ! `  k )  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( ! `
 k )  x.  ( k  +  1 ) )  <->  ( P  ||  ( ! `  k
)  \/  P  ||  ( k  +  1 ) ) ) )
3729, 32, 35, 36syl3anc 1249 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
( ! `  k
)  x.  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
3828, 37bitrd 188 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  <-> 
( P  ||  ( ! `  k )  \/  P  ||  ( k  +  1 ) ) ) )
39 nn0re 9303 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  RR )
4039adantr 276 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  e.  RR )
4140lep1d 9003 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
k  <_  ( k  +  1 ) )
42 prmz 12404 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ZZ )
4342adantl 277 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  ZZ )
4443zred 9494 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  ->  P  e.  RR )
4534nnred 9048 . . . . . . . . . . . 12  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( k  +  1 )  e.  RR )
46 letr 8154 . . . . . . . . . . . 12  |-  ( ( P  e.  RR  /\  k  e.  RR  /\  (
k  +  1 )  e.  RR )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4744, 40, 45, 46syl3anc 1249 . . . . . . . . . . 11  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  <_ 
k  /\  k  <_  ( k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) )
4841, 47mpan2d 428 . . . . . . . . . 10  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  <_  k  ->  P  <_  ( k  +  1 ) ) )
4948imim2d 54 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  k
)  ->  P  <_  ( k  +  1 ) ) ) )
5049com23 78 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  k )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  P  <_  ( k  +  1 ) ) ) )
51 dvdsle 12126 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( k  +  1 )  e.  NN )  ->  ( P  ||  ( k  +  1 )  ->  P  <_  ( k  +  1 ) ) )
5243, 34, 51syl2anc 411 . . . . . . . . 9  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  P  <_  (
k  +  1 ) ) )
5352a1dd 48 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  (
k  +  1 )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5450, 53jaod 718 . . . . . . 7  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  \/  P  ||  (
k  +  1 ) )  ->  ( ( P  ||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5538, 54sylbid 150 . . . . . 6  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  ( ( P 
||  ( ! `  k )  ->  P  <_  k )  ->  P  <_  ( k  +  1 ) ) ) )
5655com23 78 . . . . 5  |-  ( ( k  e.  NN0  /\  P  e.  Prime )  -> 
( ( P  ||  ( ! `  k )  ->  P  <_  k
)  ->  ( P  ||  ( ! `  (
k  +  1 ) )  ->  P  <_  ( k  +  1 ) ) ) )
5756ex 115 . . . 4  |-  ( k  e.  NN0  ->  ( P  e.  Prime  ->  ( ( P  ||  ( ! `
 k )  ->  P  <_  k )  -> 
( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
5857a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( P  e.  Prime  ->  ( P  ||  ( ! `
 k )  ->  P  <_  k ) )  ->  ( P  e. 
Prime  ->  ( P  ||  ( ! `  ( k  +  1 ) )  ->  P  <_  (
k  +  1 ) ) ) ) )
595, 10, 15, 20, 25, 58nn0ind 9486 . 2  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  ( P 
||  ( ! `  N )  ->  P  <_  N ) ) )
60593imp 1195 1  |-  ( ( N  e.  NN0  /\  P  e.  Prime  /\  P  ||  ( ! `  N
) )  ->  P  <_  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   RRcr 7923   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929    <_ cle 8107   NNcn 9035   NN0cn0 9294   ZZcz 9371   !cfa 10868    || cdvds 12069   Primecprime 12400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-sup 7085  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-fac 10869  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-gcd 12246  df-prm 12401
This theorem is referenced by:  prmndvdsfaclt  12449
  Copyright terms: Public domain W3C validator