ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsplit Unicode version

Theorem uzsplit 10048
Description: Express an upper integer set as the disjoint (see uzdisj 10049) union of the first  N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )

Proof of Theorem uzsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9496 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 eluzelz 9496 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
3 zlelttric 9257 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  <_  k  \/  k  <  N ) )
41, 2, 3syl2an 287 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( N  <_  k  \/  k  < 
N ) )
5 eluz 9500 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  N )  <->  N  <_  k ) )
61, 2, 5syl2an 287 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  <->  N  <_  k ) )
7 eluzel2 9492 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
8 elfzm11 10047 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <  N ) ) )
9 df-3an 975 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <  N )  <->  ( (
k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) )
108, 9bitrdi 195 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( ( k  e.  ZZ  /\  M  <_ 
k )  /\  k  <  N ) ) )
117, 1, 10syl2anr 288 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
12 eluzle 9499 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
132, 12jca 304 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1413adantl 275 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1514biantrurd 303 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  <  N  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
1611, 15bitr4d 190 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  k  <  N
) )
176, 16orbi12d 788 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  -  1 ) ) )  <->  ( N  <_  k  \/  k  < 
N ) ) )
184, 17mpbird 166 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  - 
1 ) ) ) )
1918orcomd 724 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2019ex 114 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  (
ZZ>= `  N ) ) ) )
21 elfzuz 9977 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
2221a1i 9 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  ->  k  e.  ( ZZ>= `  M )
) )
23 uztrn 9503 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
2423expcom 115 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
2522, 24jaod 712 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  ( ZZ>= `  M ) ) )
2620, 25impbid 128 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) ) ) )
27 elun 3268 . . 3  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
)  <->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2826, 27bitr4di 197 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
) ) )
2928eqrdv 2168 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    u. cun 3119   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1c1 7775    < clt 7954    <_ cle 7955    - cmin 8090   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by:  nn0split  10092  nnsplit  10093
  Copyright terms: Public domain W3C validator