ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsplit Unicode version

Theorem uzsplit 10027
Description: Express an upper integer set as the disjoint (see uzdisj 10028) union of the first  N values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )

Proof of Theorem uzsplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9475 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
2 eluzelz 9475 . . . . . . . 8  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
3 zlelttric 9236 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  <_  k  \/  k  <  N ) )
41, 2, 3syl2an 287 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( N  <_  k  \/  k  < 
N ) )
5 eluz 9479 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  N )  <->  N  <_  k ) )
61, 2, 5syl2an 287 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  <->  N  <_  k ) )
7 eluzel2 9471 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
8 elfzm11 10026 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <  N ) ) )
9 df-3an 970 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <  N )  <->  ( (
k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) )
108, 9bitrdi 195 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... ( N  -  1 ) )  <-> 
( ( k  e.  ZZ  /\  M  <_ 
k )  /\  k  <  N ) ) )
117, 1, 10syl2anr 288 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
12 eluzle 9478 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  M  <_  k )
132, 12jca 304 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1413adantl 275 . . . . . . . . . 10  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ZZ  /\  M  <_ 
k ) )
1514biantrurd 303 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  <  N  <->  ( ( k  e.  ZZ  /\  M  <_  k )  /\  k  <  N ) ) )
1611, 15bitr4d 190 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  <->  k  <  N
) )
176, 16orbi12d 783 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  -  1 ) ) )  <->  ( N  <_  k  \/  k  < 
N ) ) )
184, 17mpbird 166 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( ZZ>= `  N )  \/  k  e.  ( M ... ( N  - 
1 ) ) ) )
1918orcomd 719 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2019ex 114 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  ->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  (
ZZ>= `  N ) ) ) )
21 elfzuz 9956 . . . . . 6  |-  ( k  e.  ( M ... ( N  -  1
) )  ->  k  e.  ( ZZ>= `  M )
)
2221a1i 9 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( M ... ( N  -  1 ) )  ->  k  e.  ( ZZ>= `  M )
) )
23 uztrn 9482 . . . . . 6  |-  ( ( k  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
2423expcom 115 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  N )  ->  k  e.  ( ZZ>= `  M ) ) )
2522, 24jaod 707 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) )  -> 
k  e.  ( ZZ>= `  M ) ) )
2620, 25impbid 128 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  ( k  e.  ( M ... ( N  - 
1 ) )  \/  k  e.  ( ZZ>= `  N ) ) ) )
27 elun 3263 . . 3  |-  ( k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
)  <->  ( k  e.  ( M ... ( N  -  1 ) )  \/  k  e.  ( ZZ>= `  N )
) )
2826, 27bitr4di 197 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( ZZ>= `  M )  <->  k  e.  ( ( M ... ( N  - 
1 ) )  u.  ( ZZ>= `  N )
) ) )
2928eqrdv 2163 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  M )  =  ( ( M ... ( N  -  1 ) )  u.  ( ZZ>= `  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 968    = wceq 1343    e. wcel 2136    u. cun 3114   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1c1 7754    < clt 7933    <_ cle 7934    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945
This theorem is referenced by:  nn0split  10071  nnsplit  10072
  Copyright terms: Public domain W3C validator