| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzsplit | Unicode version | ||
| Description: Express an upper integer
set as the disjoint (see uzdisj 10285) union of
the first |
| Ref | Expression |
|---|---|
| uzsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9727 |
. . . . . . . 8
| |
| 2 | eluzelz 9727 |
. . . . . . . 8
| |
| 3 | zlelttric 9487 |
. . . . . . . 8
| |
| 4 | 1, 2, 3 | syl2an 289 |
. . . . . . 7
|
| 5 | eluz 9731 |
. . . . . . . . 9
| |
| 6 | 1, 2, 5 | syl2an 289 |
. . . . . . . 8
|
| 7 | eluzel2 9723 |
. . . . . . . . . 10
| |
| 8 | elfzm11 10283 |
. . . . . . . . . . 11
| |
| 9 | df-3an 1004 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | bitrdi 196 |
. . . . . . . . . 10
|
| 11 | 7, 1, 10 | syl2anr 290 |
. . . . . . . . 9
|
| 12 | eluzle 9730 |
. . . . . . . . . . . 12
| |
| 13 | 2, 12 | jca 306 |
. . . . . . . . . . 11
|
| 14 | 13 | adantl 277 |
. . . . . . . . . 10
|
| 15 | 14 | biantrurd 305 |
. . . . . . . . 9
|
| 16 | 11, 15 | bitr4d 191 |
. . . . . . . 8
|
| 17 | 6, 16 | orbi12d 798 |
. . . . . . 7
|
| 18 | 4, 17 | mpbird 167 |
. . . . . 6
|
| 19 | 18 | orcomd 734 |
. . . . 5
|
| 20 | 19 | ex 115 |
. . . 4
|
| 21 | elfzuz 10213 |
. . . . . 6
| |
| 22 | 21 | a1i 9 |
. . . . 5
|
| 23 | uztrn 9735 |
. . . . . 6
| |
| 24 | 23 | expcom 116 |
. . . . 5
|
| 25 | 22, 24 | jaod 722 |
. . . 4
|
| 26 | 20, 25 | impbid 129 |
. . 3
|
| 27 | elun 3345 |
. . 3
| |
| 28 | 26, 27 | bitr4di 198 |
. 2
|
| 29 | 28 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: nn0split 10328 nnsplit 10329 plyaddlem1 15415 plymullem1 15416 |
| Copyright terms: Public domain | W3C validator |