ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnfi GIF version

Theorem nnfi 6969
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Assertion
Ref Expression
nnfi (𝐴 ∈ ω → 𝐴 ∈ Fin)

Proof of Theorem nnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enrefg 6855 . . 3 (𝐴 ∈ ω → 𝐴𝐴)
2 breq2 4048 . . . 4 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
32rspcev 2877 . . 3 ((𝐴 ∈ ω ∧ 𝐴𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
41, 3mpdan 421 . 2 (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴𝑥)
5 isfi 6852 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
64, 5sylibr 134 1 (𝐴 ∈ ω → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  wrex 2485   class class class wbr 4044  ωcom 4638  cen 6825  Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6828  df-fin 6830
This theorem is referenced by:  dif1en  6976  0fin  6981  findcard2  6986  findcard2s  6987  diffisn  6990  pw1fin  7007  en1eqsn  7050  nninfwlpoimlemg  7277  nninfwlpoimlemginf  7278  exmidonfinlem  7301  fzfig  10575  hashennnuni  10924  hashennn  10925  hashun  10950  hashp1i  10955  hash2en  10988  unct  12813  xpsfrnel  13176  znidom  14419  znidomb  14420  pwf1oexmid  15936
  Copyright terms: Public domain W3C validator