| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnfi | GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6855 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 4048 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 2877 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 421 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 6852 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ∃wrex 2485 class class class wbr 4044 ωcom 4638 ≈ cen 6825 Fincfn 6827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-en 6828 df-fin 6830 |
| This theorem is referenced by: dif1en 6976 0fin 6981 findcard2 6986 findcard2s 6987 diffisn 6990 pw1fin 7007 en1eqsn 7050 nninfwlpoimlemg 7277 nninfwlpoimlemginf 7278 exmidonfinlem 7301 fzfig 10575 hashennnuni 10924 hashennn 10925 hashun 10950 hashp1i 10955 hash2en 10988 unct 12813 xpsfrnel 13176 znidom 14419 znidomb 14420 pwf1oexmid 15936 |
| Copyright terms: Public domain | W3C validator |