ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnfi GIF version

Theorem nnfi 6930
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Assertion
Ref Expression
nnfi (𝐴 ∈ ω → 𝐴 ∈ Fin)

Proof of Theorem nnfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enrefg 6820 . . 3 (𝐴 ∈ ω → 𝐴𝐴)
2 breq2 4034 . . . 4 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
32rspcev 2865 . . 3 ((𝐴 ∈ ω ∧ 𝐴𝐴) → ∃𝑥 ∈ ω 𝐴𝑥)
41, 3mpdan 421 . 2 (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴𝑥)
5 isfi 6817 . 2 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
64, 5sylibr 134 1 (𝐴 ∈ ω → 𝐴 ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wrex 2473   class class class wbr 4030  ωcom 4623  cen 6794  Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6797  df-fin 6799
This theorem is referenced by:  dif1en  6937  0fin  6942  findcard2  6947  findcard2s  6948  diffisn  6951  pw1fin  6968  en1eqsn  7009  nninfwlpoimlemg  7236  nninfwlpoimlemginf  7237  exmidonfinlem  7255  fzfig  10504  hashennnuni  10853  hashennn  10854  hashun  10879  hashp1i  10884  unct  12602  xpsfrnel  12930  znidom  14156  znidomb  14157  pwf1oexmid  15560
  Copyright terms: Public domain W3C validator