| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnfi | GIF version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| nnfi | ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6854 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ≈ 𝐴) | |
| 2 | breq2 4047 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐴 ≈ 𝑥 ↔ 𝐴 ≈ 𝐴)) | |
| 3 | 2 | rspcev 2876 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≈ 𝐴) → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 4 | 1, 3 | mpdan 421 | . 2 ⊢ (𝐴 ∈ ω → ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) |
| 5 | isfi 6851 | . 2 ⊢ (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴 ≈ 𝑥) | |
| 6 | 4, 5 | sylibr 134 | 1 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∃wrex 2484 class class class wbr 4043 ωcom 4637 ≈ cen 6824 Fincfn 6826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-en 6827 df-fin 6829 |
| This theorem is referenced by: dif1en 6975 0fin 6980 findcard2 6985 findcard2s 6986 diffisn 6989 pw1fin 7006 en1eqsn 7049 nninfwlpoimlemg 7276 nninfwlpoimlemginf 7277 exmidonfinlem 7300 fzfig 10573 hashennnuni 10922 hashennn 10923 hashun 10948 hashp1i 10953 hash2en 10986 unct 12784 xpsfrnel 13147 znidom 14390 znidomb 14391 pwf1oexmid 15898 |
| Copyright terms: Public domain | W3C validator |