ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnrpd Unicode version

Theorem nnrpd 9067
Description: A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
nnrpd.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
nnrpd  |-  ( ph  ->  A  e.  RR+ )

Proof of Theorem nnrpd
StepHypRef Expression
1 nnrpd.1 . 2  |-  ( ph  ->  A  e.  NN )
2 nnrp 9038 . 2  |-  ( A  e.  NN  ->  A  e.  RR+ )
31, 2syl 14 1  |-  ( ph  ->  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1434   NNcn 8316   RR+crp 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1re 7342  ax-addrcl 7345  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-xp 4407  df-cnv 4409  df-iota 4934  df-fv 4977  df-ov 5594  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-inn 8317  df-rp 9030
This theorem is referenced by:  qtri3or  9543  qbtwnrelemcalc  9556  qbtwnre  9557  flqdiv  9617  addmodlteq  9694  nnesq  9908  bcpasc  10009  cvg1nlemcxze  10242  cvg1nlemcau  10244  cvg1nlemres  10245  resqrexlemnmsq  10277  resqrexlemnm  10278  resqrexlemcvg  10279  climrecvg1n  10559  climcvg1nlem  10560  prmind2  10882  sqrt2irrlem  10920  sqrt2irraplemnn  10937  sqrt2irrap  10938
  Copyright terms: Public domain W3C validator