HomeHome Intuitionistic Logic Explorer
Theorem List (p. 123 of 144)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12201-12300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfermltl 12201 Fermat's little theorem. When  P is prime,  A ^ P  ==  A (mod  P) for any  A, see theorem 5.19 in [ApostolNT] p. 114. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 19-Mar-2022.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( ( A ^ P )  mod  P )  =  ( A 
 mod  P ) )
 
Theoremprmdiv 12202 Show an explicit expression for the modular inverse of  A  mod  P. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  R  =  ( ( A ^ ( P  -  2 ) ) 
 mod  P )   =>    |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\ 
 -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  -  1 ) ) 
 /\  P  ||  (
 ( A  x.  R )  -  1 ) ) )
 
Theoremprmdiveq 12203 The modular inverse of  A  mod  P is unique. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  R  =  ( ( A ^ ( P  -  2 ) ) 
 mod  P )   =>    |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\ 
 -.  P  ||  A )  ->  ( ( S  e.  ( 0 ... ( P  -  1
 ) )  /\  P  ||  ( ( A  x.  S )  -  1
 ) )  <->  S  =  R ) )
 
Theoremprmdivdiv 12204 The (modular) inverse of the inverse of a number is itself. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  R  =  ( ( A ^ ( P  -  2 ) ) 
 mod  P )   =>    |-  ( ( P  e.  Prime  /\  A  e.  (
 1 ... ( P  -  1 ) ) ) 
 ->  A  =  ( ( R ^ ( P  -  2 ) ) 
 mod  P ) )
 
Theoremhashgcdlem 12205* A correspondence between elements of specific GCD and relative primes in a smaller ring. (Contributed by Stefan O'Rear, 12-Sep-2015.)
 |-  A  =  { y  e.  ( 0..^ ( M 
 /  N ) )  |  ( y  gcd  ( M  /  N ) )  =  1 }   &    |-  B  =  { z  e.  ( 0..^ M )  |  ( z  gcd  M )  =  N }   &    |-  F  =  ( x  e.  A  |->  ( x  x.  N ) )   =>    |-  ( ( M  e.  NN  /\  N  e.  NN  /\  N  ||  M )  ->  F : A -1-1-onto-> B )
 
Theoremhashgcdeq 12206* Number of initial positive integers with specified divisors. (Contributed by Stefan O'Rear, 12-Sep-2015.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( `  { x  e.  ( 0..^ M )  |  ( x  gcd  M )  =  N }
 )  =  if ( N  ||  M ,  ( phi `  ( M  /  N ) ) ,  0 ) )
 
Theoremphisum 12207* The divisor sum identity of the totient function. Theorem 2.2 in [ApostolNT] p. 26. (Contributed by Stefan O'Rear, 12-Sep-2015.)
 |-  ( N  e.  NN  -> 
 sum_ d  e.  { x  e.  NN  |  x  ||  N }  ( phi `  d )  =  N )
 
Theoremodzval 12208* Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod  N for some  N, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod  N. In order to ensure the supremum is well-defined, we only define the expression when  A and  N are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( ( odZ `  N ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1
 ) } ,  RR ,  <  ) )
 
Theoremodzcllem 12209 - Lemma for odzcl 12210, showing existence of a recurrent point for the exponential. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( ( ( odZ `  N ) `  A )  e.  NN  /\  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  -  1 ) ) )
 
Theoremodzcl 12210 The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( ( odZ `  N ) `  A )  e.  NN )
 
Theoremodzid 12211 Any element raised to the power of its order is  1. (Contributed by Mario Carneiro, 28-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  N  ||  ( ( A ^ ( ( odZ `  N ) `  A ) )  -  1 ) )
 
Theoremodzdvds 12212 The only powers of  A that are congruent to  1 are the multiples of the order of  A. (Contributed by Mario Carneiro, 28-Feb-2014.) (Proof shortened by AV, 26-Sep-2020.)
 |-  ( ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A 
 gcd  N )  =  1 )  /\  K  e.  NN0 )  ->  ( N  ||  ( ( A ^ K )  -  1
 ) 
 <->  ( ( odZ `  N ) `  A )  ||  K ) )
 
Theoremodzphi 12213 The order of any group element is a divisor of the Euler  phi function. (Contributed by Mario Carneiro, 28-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  ( ( odZ `  N ) `  A )  ||  ( phi `  N ) )
 
5.2.6  Arithmetic modulo a prime number
 
Theoremmodprm1div 12214 A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018.) (Proof shortened by AV, 30-May-2023.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( ( A 
 mod  P )  =  1  <->  P  ||  ( A  -  1 ) ) )
 
Theoremm1dvdsndvds 12215 If an integer minus 1 is divisible by a prime number, the integer itself is not divisible by this prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  -  1
 )  ->  -.  P  ||  A ) )
 
Theoremmodprminv 12216 Show an explicit expression for the modular inverse of  A  mod  P. This is an application of prmdiv 12202. (Contributed by Alexander van der Vekens, 15-May-2018.)
 |-  R  =  ( ( A ^ ( P  -  2 ) ) 
 mod  P )   =>    |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\ 
 -.  P  ||  A )  ->  ( R  e.  ( 1 ... ( P  -  1 ) ) 
 /\  ( ( A  x.  R )  mod  P )  =  1 ) )
 
Theoremmodprminveq 12217 The modular inverse of  A  mod  P is unique. (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  R  =  ( ( A ^ ( P  -  2 ) ) 
 mod  P )   =>    |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\ 
 -.  P  ||  A )  ->  ( ( S  e.  ( 0 ... ( P  -  1
 ) )  /\  (
 ( A  x.  S )  mod  P )  =  1 )  <->  S  =  R ) )
 
Theoremvfermltl 12218 Variant of Fermat's little theorem if  A is not a multiple of  P, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\ 
 -.  P  ||  A )  ->  ( ( A ^ ( P  -  1 ) )  mod  P )  =  1 )
 
Theorempowm2modprm 12219 If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  -  1
 )  ->  ( ( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )
 
Theoremreumodprminv 12220* For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018.)
 |-  ( ( P  e.  Prime  /\  N  e.  (
 1..^ P ) ) 
 ->  E! i  e.  (
 1 ... ( P  -  1 ) ) ( ( N  x.  i
 )  mod  P )  =  1 )
 
Theoremmodprm0 12221* For two positive integers less than a given prime number there is always a nonnegative integer (less than the given prime number) so that the sum of one of the two positive integers and the other of the positive integers multiplied by the nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 17-May-2018.)
 |-  ( ( P  e.  Prime  /\  N  e.  (
 1..^ P )  /\  I  e.  ( 1..^ P ) )  ->  E. j  e.  (
 0..^ P ) ( ( I  +  (
 j  x.  N ) )  mod  P )  =  0 )
 
Theoremnnnn0modprm0 12222* For a positive integer and a nonnegative integer both less than a given prime number there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the positive integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 8-Nov-2018.)
 |-  ( ( P  e.  Prime  /\  N  e.  (
 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
 0..^ P ) ( ( I  +  (
 j  x.  N ) )  mod  P )  =  0 )
 
Theoremmodprmn0modprm0 12223* For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( I  e.  (
 0..^ P )  ->  E. j  e.  (
 0..^ P ) ( ( I  +  (
 j  x.  N ) )  mod  P )  =  0 ) )
 
5.2.7  Pythagorean Triples
 
Theoremcoprimeprodsq 12224 If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  ZZ  /\  C  e.  NN0 )  /\  ( ( A 
 gcd  B )  gcd  C )  =  1 )  ->  ( ( C ^
 2 )  =  ( A  x.  B ) 
 ->  A  =  ( ( A  gcd  C ) ^ 2 ) ) )
 
Theoremcoprimeprodsq2 12225 If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of  gcd and square. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  NN0  /\  C  e.  NN0 )  /\  ( ( A  gcd  B ) 
 gcd  C )  =  1 )  ->  ( ( C ^ 2 )  =  ( A  x.  B )  ->  B  =  ( ( B  gcd  C ) ^ 2 ) ) )
 
Theoremoddprm 12226 A prime not equal to  2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Proof shortened by AV, 10-Jul-2022.)
 |-  ( N  e.  ( Prime  \  { 2 } )  ->  ( ( N  -  1 )  / 
 2 )  e.  NN )
 
Theoremnnoddn2prm 12227 A prime not equal to  2 is an odd positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  ( Prime  \  { 2 } )  ->  ( N  e.  NN  /\  -.  2  ||  N ) )
 
Theoremoddn2prm 12228 A prime not equal to  2 is odd. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  ( Prime  \  { 2 } )  ->  -.  2  ||  N )
 
Theoremnnoddn2prmb 12229 A number is a prime number not equal to  2 iff it is an odd prime number. Conversion theorem for two representations of odd primes. (Contributed by AV, 14-Jul-2021.)
 |-  ( N  e.  ( Prime  \  { 2 } )  <->  ( N  e.  Prime  /\  -.  2  ||  N ) )
 
Theoremprm23lt5 12230 A prime less than 5 is either 2 or 3. (Contributed by AV, 5-Jul-2021.)
 |-  ( ( P  e.  Prime  /\  P  <  5
 )  ->  ( P  =  2  \/  P  =  3 ) )
 
Theoremprm23ge5 12231 A prime is either 2 or 3 or greater than or equal to 5. (Contributed by AV, 5-Jul-2021.)
 |-  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3  \/  P  e.  ( ZZ>= `  5 ) ) )
 
Theorempythagtriplem1 12232* Lemma for pythagtrip 12250. Prove a weaker version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( E. n  e. 
 NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
 ( m ^ 2
 )  +  ( n ^ 2 ) ) ) )  ->  (
 ( A ^ 2
 )  +  ( B ^ 2 ) )  =  ( C ^
 2 ) )
 
Theorempythagtriplem2 12233* Lemma for pythagtrip 12250. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e. 
 NN  E. k  e.  NN  ( { A ,  B }  =  { (
 k  x.  ( ( m ^ 2 )  -  ( n ^
 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  (
 ( m ^ 2
 )  +  ( n ^ 2 ) ) ) )  ->  (
 ( A ^ 2
 )  +  ( B ^ 2 ) )  =  ( C ^
 2 ) ) )
 
Theorempythagtriplem3 12234 Lemma for pythagtrip 12250. Show that  C and 
B are relatively prime under some conditions. (Contributed by Scott Fenton, 8-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( B  gcd  C )  =  1 )
 
Theorempythagtriplem4 12235 Lemma for pythagtrip 12250. Show that  C  -  B and  C  +  B are relatively prime. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( ( C  -  B )  gcd  ( C  +  B ) )  =  1 )
 
Theorempythagtriplem10 12236 Lemma for pythagtrip 12250. Show that  C  -  B is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 ) )  ->  0  <  ( C  -  B ) )
 
Theorempythagtriplem6 12237 Lemma for pythagtrip 12250. Calculate  ( sqr `  ( C  -  B ) ). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  -  B ) )  =  ( ( C  -  B )  gcd  A ) )
 
Theorempythagtriplem7 12238 Lemma for pythagtrip 12250. Calculate  ( sqr `  ( C  +  B ) ). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  +  B ) )  =  ( ( C  +  B )  gcd  A ) )
 
Theorempythagtriplem8 12239 Lemma for pythagtrip 12250. Show that  ( sqr `  ( C  -  B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  -  B ) )  e. 
 NN )
 
Theorempythagtriplem9 12240 Lemma for pythagtrip 12250. Show that  ( sqr `  ( C  +  B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  +  B ) )  e. 
 NN )
 
Theorempythagtriplem11 12241 Lemma for pythagtrip 12250. Show that  M (which will eventually be closely related to the  m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  M  e.  NN )
 
Theorempythagtriplem12 12242 Lemma for pythagtrip 12250. Calculate the square of  M. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( M ^ 2 )  =  ( ( C  +  A )  / 
 2 ) )
 
Theorempythagtriplem13 12243 Lemma for pythagtrip 12250. Show that  N (which will eventually be closely related to the  n in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  N  e.  NN )
 
Theorempythagtriplem14 12244 Lemma for pythagtrip 12250. Calculate the square of  N. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  / 
 2 ) )
 
Theorempythagtriplem15 12245 Lemma for pythagtrip 12250. Show the relationship between  M,  N, and  A. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  A  =  ( ( M ^ 2 )  -  ( N ^ 2 ) ) )
 
Theorempythagtriplem16 12246 Lemma for pythagtrip 12250. Show the relationship between  M,  N, and  B. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  B  =  ( 2  x.  ( M  x.  N ) ) )
 
Theorempythagtriplem17 12247 Lemma for pythagtrip 12250. Show the relationship between  M,  N, and  C. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  C  =  ( ( M ^ 2 )  +  ( N ^ 2 ) ) )
 
Theorempythagtriplem18 12248* Lemma for pythagtrip 12250. Wrap the previous  M and  N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) ) 
 /\  C  =  ( ( m ^ 2
 )  +  ( n ^ 2 ) ) ) )
 
Theorempythagtriplem19 12249* Lemma for pythagtrip 12250. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e. 
 NN  E. k  e.  NN  ( A  =  (
 k  x.  ( ( m ^ 2 )  -  ( n ^
 2 ) ) ) 
 /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) 
 /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
 2 ) ) ) ) )
 
Theorempythagtrip 12250* Parameterize the Pythagorean triples. If  A,  B, and  C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
 
5.2.8  The prime count function
 
Syntaxcpc 12251 Extend class notation with the prime count function.
 class  pCnt
 
Definitiondf-pc 12252* Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |- 
 pCnt  =  ( p  e.  Prime ,  r  e. 
 QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e. 
 NN  ( r  =  ( x  /  y
 )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n ) 
 ||  y } ,  RR ,  <  ) ) ) ) ) )
 
Theorempclem0 12253* Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  0  e.  A )
 
Theorempclemub 12254* Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
 
Theorempclemdc 12255* Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e. 
 ZZ DECID  x  e.  A )
 
Theorempcprecl 12256* Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( S  e.  NN0  /\  ( P ^ S )  ||  N ) )
 
Theorempcprendvds 12257* Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
 
Theorempcprendvds2 12258* Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ S ) ) )
 
Theorempcpre1 12259* Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  N  =  1 ) 
 ->  S  =  0 )
 
Theorempcpremul 12260* Multiplicative property of the prime count pre-function. Note that the primality of  P is essential for this property;  ( 4  pCnt  2
)  =  0 but  ( 4  pCnt 
( 2  x.  2 ) )  =  1  =/=  2  x.  (
4  pCnt  2 )  =  0. Since this is needed to show uniqueness for the real prime count function (over  QQ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  M } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )   &    |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N ) } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( S  +  T )  =  U )
 
Theorempceulem 12261* Lemma for pceu 12262. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   &    |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )   &    |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  N  =/=  0 )   &    |-  ( ph  ->  ( x  e. 
 ZZ  /\  y  e.  NN ) )   &    |-  ( ph  ->  N  =  ( x  /  y ) )   &    |-  ( ph  ->  ( s  e. 
 ZZ  /\  t  e.  NN ) )   &    |-  ( ph  ->  N  =  ( s  /  t ) )   =>    |-  ( ph  ->  ( S  -  T )  =  ( U  -  V ) )
 
Theorempceu 12262* Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
 
Theorempcval 12263* The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
 )  /\  z  =  ( S  -  T ) ) ) )
 
Theorempczpre 12264* Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  N } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( P  pCnt  N )  =  S )
 
Theorempczcl 12265 Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  e. 
 NN0 )
 
Theorempccl 12266 Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( P  pCnt  N )  e.  NN0 )
 
Theorempccld 12267 Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( P  pCnt  N )  e.  NN0 )
 
Theorempcmul 12268 Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0
 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P 
 pCnt  A )  +  ( P  pCnt  B ) ) )
 
Theorempcdiv 12269 Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0
 )  /\  B  e.  NN )  ->  ( P 
 pCnt  ( A  /  B ) )  =  (
 ( P  pCnt  A )  -  ( P  pCnt  B ) ) )
 
Theorempcqmul 12270 Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P 
 pCnt  A )  +  ( P  pCnt  B ) ) )
 
Theorempc0 12271 The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( P  e.  Prime  ->  ( P  pCnt  0 )  = +oo )
 
Theorempc1 12272 Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( P  e.  Prime  ->  ( P  pCnt  1 )  =  0 )
 
Theorempcqcl 12273 Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  e. 
 ZZ )
 
Theorempcqdiv 12274 Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A 
 /  B ) )  =  ( ( P 
 pCnt  A )  -  ( P  pCnt  B ) ) )
 
Theorempcrec 12275 Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 ) )  ->  ( P  pCnt  ( 1  /  A ) )  =  -u ( P  pCnt  A ) )
 
Theorempcexp 12276 Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  N  e.  ZZ )  ->  ( P 
 pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
 
Theorempcxnn0cl 12277 Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  pCnt  N )  e. NN0* )
 
Theorempcxcl 12278 Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( P  pCnt  N )  e.  RR* )
 
Theorempcge0 12279 The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  0  <_  ( P  pCnt  N ) )
 
Theorempczdvds 12280 Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  ( P ^ ( P  pCnt  N ) )  ||  N )
 
Theorempcdvds 12281 Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( P ^
 ( P  pCnt  N ) )  ||  N )
 
Theorempczndvds 12282 Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  -.  ( P ^ ( ( P 
 pCnt  N )  +  1 ) )  ||  N )
 
Theorempcndvds 12283 Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  -.  ( P ^ ( ( P 
 pCnt  N )  +  1 ) )  ||  N )
 
Theorempczndvds2 12284 The remainder after dividing out all factors of  P is not divisible by  P. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  -.  P  ||  ( N  /  ( P ^ ( P  pCnt  N ) ) ) )
 
Theorempcndvds2 12285 The remainder after dividing out all factors of  P is not divisible by  P. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  -.  P  ||  ( N  /  ( P ^
 ( P  pCnt  N ) ) ) )
 
Theorempcdvdsb 12286  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N ) )
 
Theorempcelnn 12287 There are a positive number of powers of a prime  P in  N iff  P divides  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  e.  NN  <->  P  ||  N ) )
 
Theorempceq0 12288 There are zero powers of a prime  P in  N iff  P does not divide  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  =  0  <->  -.  P  ||  N )
 )
 
Theorempcidlem 12289 The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcid 12290 The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcneg 12291 The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A )
 )
 
Theorempcabs 12292 The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A )
 )  =  ( P 
 pCnt  A ) )
 
Theorempcdvdstr 12293 The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )
 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
 
Theorempcgcd1 12294 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  ( P  pCnt  ( A 
 gcd  B ) )  =  ( P  pCnt  A ) )
 
Theorempcgcd 12295 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P 
 pCnt  B ) ) )
 
Theorempc2dvds 12296* A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B 
 <-> 
 A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
 
Theorempc11 12297* The prime count function, viewed as a function from  NN to  ( NN  ^m  Prime ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p  pCnt  B ) ) )
 
Theorempcz 12298* The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) ) )
 
Theorempcprmpw2 12299* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  ||  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
 
Theorempcprmpw 12300* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  =  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14390
  Copyright terms: Public domain < Previous  Next >