HomeHome Intuitionistic Logic Explorer
Theorem List (p. 123 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12201-12300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempythagtriplem10 12201 Lemma for pythagtrip 12215. Show that  C  -  B is positive. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 ) )  ->  0  <  ( C  -  B ) )
 
Theorempythagtriplem6 12202 Lemma for pythagtrip 12215. Calculate  ( sqr `  ( C  -  B ) ). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  -  B ) )  =  ( ( C  -  B )  gcd  A ) )
 
Theorempythagtriplem7 12203 Lemma for pythagtrip 12215. Calculate  ( sqr `  ( C  +  B ) ). (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  +  B ) )  =  ( ( C  +  B )  gcd  A ) )
 
Theorempythagtriplem8 12204 Lemma for pythagtrip 12215. Show that  ( sqr `  ( C  -  B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  -  B ) )  e. 
 NN )
 
Theorempythagtriplem9 12205 Lemma for pythagtrip 12215. Show that  ( sqr `  ( C  +  B ) ) is a positive integer. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( sqr `  ( C  +  B ) )  e. 
 NN )
 
Theorempythagtriplem11 12206 Lemma for pythagtrip 12215. Show that  M (which will eventually be closely related to the  m in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  M  e.  NN )
 
Theorempythagtriplem12 12207 Lemma for pythagtrip 12215. Calculate the square of  M. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( M ^ 2 )  =  ( ( C  +  A )  / 
 2 ) )
 
Theorempythagtriplem13 12208 Lemma for pythagtrip 12215. Show that  N (which will eventually be closely related to the  n in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  N  e.  NN )
 
Theorempythagtriplem14 12209 Lemma for pythagtrip 12215. Calculate the square of  N. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  / 
 2 ) )
 
Theorempythagtriplem15 12210 Lemma for pythagtrip 12215. Show the relationship between  M,  N, and  A. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  A  =  ( ( M ^ 2 )  -  ( N ^ 2 ) ) )
 
Theorempythagtriplem16 12211 Lemma for pythagtrip 12215. Show the relationship between  M,  N, and  B. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  B  =  ( 2  x.  ( M  x.  N ) ) )
 
Theorempythagtriplem17 12212 Lemma for pythagtrip 12215. Show the relationship between  M,  N, and  C. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  M  =  ( ( ( sqr `  ( C  +  B )
 )  +  ( sqr `  ( C  -  B ) ) )  / 
 2 )   &    |-  N  =  ( ( ( sqr `  ( C  +  B )
 )  -  ( sqr `  ( C  -  B ) ) )  / 
 2 )   =>    |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  C  =  ( ( M ^ 2 )  +  ( N ^ 2 ) ) )
 
Theorempythagtriplem18 12213* Lemma for pythagtrip 12215. Wrap the previous  M and  N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  ( ( A  gcd  B )  =  1  /\  -.  2  ||  A ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) ) 
 /\  C  =  ( ( m ^ 2
 )  +  ( n ^ 2 ) ) ) )
 
Theorempythagtriplem19 12214* Lemma for pythagtrip 12215. Introduce  k and remove the relative primality requirement. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^ 2 )  +  ( B ^
 2 ) )  =  ( C ^ 2
 )  /\  -.  2  ||  ( A  /  ( A  gcd  B ) ) )  ->  E. n  e.  NN  E. m  e. 
 NN  E. k  e.  NN  ( A  =  (
 k  x.  ( ( m ^ 2 )  -  ( n ^
 2 ) ) ) 
 /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) 
 /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
 2 ) ) ) ) )
 
Theorempythagtrip 12215* Parameterize the Pythagorean triples. If  A,  B, and  C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml. This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  { ( k  x.  ( ( m ^
 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
 
5.2.8  The prime count function
 
Syntaxcpc 12216 Extend class notation with the prime count function.
 class  pCnt
 
Definitiondf-pc 12217* Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |- 
 pCnt  =  ( p  e.  Prime ,  r  e. 
 QQ  |->  if ( r  =  0 , +oo ,  ( iota z E. x  e.  ZZ  E. y  e. 
 NN  ( r  =  ( x  /  y
 )  /\  z  =  ( sup ( { n  e.  NN0  |  ( p ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( p ^ n ) 
 ||  y } ,  RR ,  <  ) ) ) ) ) )
 
Theorempclem0 12218* Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  0  e.  A )
 
Theorempclemub 12219* Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Jim Kingdon, 7-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
 
Theorempclemdc 12220* Lemma for the prime power pre-function's properties. (Contributed by Jim Kingdon, 8-Oct-2024.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A. x  e. 
 ZZ DECID  x  e.  A )
 
Theorempcprecl 12221* Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( S  e.  NN0  /\  ( P ^ S )  ||  N ) )
 
Theorempcprendvds 12222* Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
 
Theorempcprendvds2 12223* Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ S ) ) )
 
Theorempcpre1 12224* Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
 |-  A  =  { n  e.  NN0  |  ( P ^ n )  ||  N }   &    |-  S  =  sup ( A ,  RR ,  <  )   =>    |-  ( ( P  e.  ( ZZ>= `  2 )  /\  N  =  1 ) 
 ->  S  =  0 )
 
Theorempcpremul 12225* Multiplicative property of the prime count pre-function. Note that the primality of  P is essential for this property;  ( 4  pCnt  2
)  =  0 but  ( 4  pCnt 
( 2  x.  2 ) )  =  1  =/=  2  x.  (
4  pCnt  2 )  =  0. Since this is needed to show uniqueness for the real prime count function (over  QQ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  M } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )   &    |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  ( M  x.  N ) } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( M  e.  ZZ  /\  M  =/=  0 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( S  +  T )  =  U )
 
Theorempceulem 12226* Lemma for pceu 12227. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   &    |-  U  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )   &    |-  V  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  N  =/=  0 )   &    |-  ( ph  ->  ( x  e. 
 ZZ  /\  y  e.  NN ) )   &    |-  ( ph  ->  N  =  ( x  /  y ) )   &    |-  ( ph  ->  ( s  e. 
 ZZ  /\  t  e.  NN ) )   &    |-  ( ph  ->  N  =  ( s  /  t ) )   =>    |-  ( ph  ->  ( S  -  T )  =  ( U  -  V ) )
 
Theorempceu 12227* Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
 
Theorempcval 12228* The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  x } ,  RR ,  <  )   &    |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
 )  /\  z  =  ( S  -  T ) ) ) )
 
Theorempczpre 12229* Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n ) 
 ||  N } ,  RR ,  <  )   =>    |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  ( P  pCnt  N )  =  S )
 
Theorempczcl 12230 Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  e. 
 NN0 )
 
Theorempccl 12231 Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( P  pCnt  N )  e.  NN0 )
 
Theorempccld 12232 Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( P  pCnt  N )  e.  NN0 )
 
Theorempcmul 12233 Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0
 )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P 
 pCnt  A )  +  ( P  pCnt  B ) ) )
 
Theorempcdiv 12234 Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0
 )  /\  B  e.  NN )  ->  ( P 
 pCnt  ( A  /  B ) )  =  (
 ( P  pCnt  A )  -  ( P  pCnt  B ) ) )
 
Theorempcqmul 12235 Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P 
 pCnt  A )  +  ( P  pCnt  B ) ) )
 
Theorempc0 12236 The value of the prime power function at zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( P  e.  Prime  ->  ( P  pCnt  0 )  = +oo )
 
Theorempc1 12237 Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( P  e.  Prime  ->  ( P  pCnt  1 )  =  0 )
 
Theorempcqcl 12238 Closure of the general prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0
 ) )  ->  ( P  pCnt  N )  e. 
 ZZ )
 
Theorempcqdiv 12239 Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( P  pCnt  ( A 
 /  B ) )  =  ( ( P 
 pCnt  A )  -  ( P  pCnt  B ) ) )
 
Theorempcrec 12240 Prime power of a reciprocal. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 ) )  ->  ( P  pCnt  ( 1  /  A ) )  =  -u ( P  pCnt  A ) )
 
Theorempcexp 12241 Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0
 )  /\  N  e.  ZZ )  ->  ( P 
 pCnt  ( A ^ N ) )  =  ( N  x.  ( P  pCnt  A ) ) )
 
Theorempcxnn0cl 12242 Extended nonnegative integer closure of the general prime count function. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( P  pCnt  N )  e. NN0* )
 
Theorempcxcl 12243 Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( P  pCnt  N )  e.  RR* )
 
Theorempcge0 12244 The prime count of an integer is greater than or equal to zero. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  0  <_  ( P  pCnt  N ) )
 
Theorempczdvds 12245 Defining property of the prime count function. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  ( P ^ ( P  pCnt  N ) )  ||  N )
 
Theorempcdvds 12246 Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( P ^
 ( P  pCnt  N ) )  ||  N )
 
Theorempczndvds 12247 Defining property of the prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  -.  ( P ^ ( ( P 
 pCnt  N )  +  1 ) )  ||  N )
 
Theorempcndvds 12248 Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  -.  ( P ^ ( ( P 
 pCnt  N )  +  1 ) )  ||  N )
 
Theorempczndvds2 12249 The remainder after dividing out all factors of  P is not divisible by  P. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0
 ) )  ->  -.  P  ||  ( N  /  ( P ^ ( P  pCnt  N ) ) ) )
 
Theorempcndvds2 12250 The remainder after dividing out all factors of  P is not divisible by  P. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  -.  P  ||  ( N  /  ( P ^
 ( P  pCnt  N ) ) ) )
 
Theorempcdvdsb 12251  P ^ A divides  N if and only if  A is at most the count of  P. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  A  e.  NN0 )  ->  ( A  <_  ( P  pCnt  N )  <->  ( P ^ A )  ||  N ) )
 
Theorempcelnn 12252 There are a positive number of powers of a prime  P in  N iff  P divides  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  e.  NN  <->  P  ||  N ) )
 
Theorempceq0 12253 There are zero powers of a prime  P in  N iff  P does not divide  N. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( P  e.  Prime  /\  N  e.  NN )  ->  ( ( P 
 pCnt  N )  =  0  <->  -.  P  ||  N )
 )
 
Theorempcidlem 12254 The prime count of a prime power. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN0 )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcid 12255 The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  ( P ^ A ) )  =  A )
 
Theorempcneg 12256 The prime count of a negative number. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  -u A )  =  ( P  pCnt  A )
 )
 
Theorempcabs 12257 The prime count of an absolute value. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  QQ )  ->  ( P  pCnt  ( abs `  A )
 )  =  ( P 
 pCnt  A ) )
 
Theorempcdvdstr 12258 The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )
 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
 
Theorempcgcd1 12259 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  ( P  pCnt  ( A 
 gcd  B ) )  =  ( P  pCnt  A ) )
 
Theorempcgcd 12260 The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P 
 pCnt  B ) ) )
 
Theorempc2dvds 12261* A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B 
 <-> 
 A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
 
Theorempc11 12262* The prime count function, viewed as a function from  NN to  ( NN  ^m  Prime ), is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. p  e.  Prime  ( p  pCnt  A )  =  ( p  pCnt  B ) ) )
 
Theorempcz 12263* The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  A ) ) )
 
Theorempcprmpw2 12264* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  ||  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
 
Theorempcprmpw 12265* Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN )  ->  ( E. n  e.  NN0  A  =  ( P ^ n )  <->  A  =  ( P ^ ( P  pCnt  A ) ) ) )
 
Theoremdvdsprmpweq 12266* If a positive integer divides a prime power, it is a prime power. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
 
Theoremdvdsprmpweqnn 12267* If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>=
 `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
 
Theoremdvdsprmpweqle 12268* If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
 
Theoremdifsqpwdvds 12269 If the difference of two squares is a power of a prime, the prime divides twice the second squared number. (Contributed by AV, 13-Aug-2021.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  NN0  /\  ( B  +  1 )  <  A ) 
 /\  ( C  e.  Prime  /\  D  e.  NN0 ) )  ->  ( ( C ^ D )  =  ( ( A ^ 2 )  -  ( B ^ 2 ) )  ->  C  ||  (
 2  x.  B ) ) )
 
Theorempcaddlem 12270 Lemma for pcadd 12271. The original numbers  A and  B have been decomposed using the prime count function as  ( P ^ M )  x.  ( R  /  S ) where  R ,  S are both not divisible by  P and  M  =  ( P  pCnt  A ), and similarly for  B. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  =  ( ( P ^ M )  x.  ( R  /  S ) ) )   &    |-  ( ph  ->  B  =  ( ( P ^ N )  x.  ( T  /  U ) ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  ( R  e.  ZZ  /\  -.  P  ||  R ) )   &    |-  ( ph  ->  ( S  e.  NN  /\  -.  P  ||  S ) )   &    |-  ( ph  ->  ( T  e.  ZZ  /\  -.  P  ||  T ) )   &    |-  ( ph  ->  ( U  e.  NN  /\  -.  P  ||  U ) )   =>    |-  ( ph  ->  M 
 <_  ( P  pCnt  ( A  +  B )
 ) )
 
Theorempcadd 12271 An inequality for the prime count of a sum. This is the source of the ultrametric inequality for the p-adic metric. (Contributed by Mario Carneiro, 9-Sep-2014.)
 |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  A  e.  QQ )   &    |-  ( ph  ->  B  e.  QQ )   &    |-  ( ph  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )   =>    |-  ( ph  ->  ( P  pCnt  A )  <_  ( P  pCnt  ( A  +  B ) ) )
 
Theorempcmptcl 12272 Closure for the prime power map. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   =>    |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
 
Theorempcmpt 12273* Construct a function with given prime count characteristics. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( n  =  P  ->  A  =  B )   =>    |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `
  N ) )  =  if ( P 
 <_  N ,  B , 
 0 ) )
 
Theorempcmpt2 12274* Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( n  =  P  ->  A  =  B )   &    |-  ( ph  ->  M  e.  ( ZZ>= `  N )
 )   =>    |-  ( ph  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x. 
 ,  F ) `  N ) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
 
Theorempcmptdvds 12275 The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )   &    |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ( ZZ>=
 `  N ) )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x. 
 ,  F ) `  M ) )
 
Theorempcprod 12276* The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
 |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ ( n  pCnt  N ) ) ,  1 ) )   =>    |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `
  N )  =  N )
 
Theoremsumhashdc 12277* The sum of 1 over a set is the size of the set. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 20-May-2014.)
 |-  ( ( B  e.  Fin  /\  A  C_  B  /\  A. x  e.  B DECID  x  e.  A )  ->  sum_ k  e.  B  if ( k  e.  A ,  1 ,  0 )  =  ( `  A )
 )
 
Theoremfldivp1 12278 The difference between the floors of adjacent fractions is either 1 or 0. (Contributed by Mario Carneiro, 8-Mar-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( |_ `  ( ( M  +  1 )  /  N ) )  -  ( |_ `  ( M  /  N ) ) )  =  if ( N  ||  ( M  +  1
 ) ,  1 ,  0 ) )
 
Theorempcfaclem 12279 Lemma for pcfac 12280. (Contributed by Mario Carneiro, 20-May-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( |_ `  ( N  /  ( P ^ M ) ) )  =  0 )
 
Theorempcfac 12280* Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
 |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ...
 M ) ( |_ `  ( N  /  ( P ^ k ) ) ) )
 
Theorempcbc 12281* Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
 |-  ( ( N  e.  NN  /\  K  e.  (
 0 ... N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  (
 1 ... N ) ( ( |_ `  ( N  /  ( P ^
 k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
 
Theoremqexpz 12282 If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( A  e.  QQ  /\  N  e.  NN  /\  ( A ^ N )  e.  ZZ )  ->  A  e.  ZZ )
 
Theoremexpnprm 12283 A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is not rational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
 |-  ( ( A  e.  QQ  /\  N  e.  ( ZZ>=
 `  2 ) ) 
 ->  -.  ( A ^ N )  e.  Prime )
 
Theoremoddprmdvds 12284* Every positive integer which is not a power of two is divisible by an odd prime number. (Contributed by AV, 6-Aug-2021.)
 |-  ( ( K  e.  NN  /\  -.  E. n  e.  NN0  K  =  ( 2 ^ n ) )  ->  E. p  e.  ( Prime  \  { 2 } ) p  ||  K )
 
5.2.9  Pocklington's theorem
 
Theoremprmpwdvds 12285 A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ( ( K  e.  ZZ  /\  D  e.  ZZ )  /\  ( P  e.  Prime  /\  N  e.  NN )  /\  ( D  ||  ( K  x.  ( P ^ N ) )  /\  -.  D  ||  ( K  x.  ( P ^ ( N  -  1 ) ) ) ) )  ->  ( P ^ N )  ||  D )
 
Theorempockthlem 12286 Lemma for pockthg 12287. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  B  <  A )   &    |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1
 ) )   &    |-  ( ph  ->  P  e.  Prime )   &    |-  ( ph  ->  P 
 ||  N )   &    |-  ( ph  ->  Q  e.  Prime )   &    |-  ( ph  ->  ( Q  pCnt  A )  e.  NN )   &    |-  ( ph  ->  C  e.  ZZ )   &    |-  ( ph  ->  ( ( C ^ ( N  -  1 ) ) 
 mod  N )  =  1 )   &    |-  ( ph  ->  ( ( ( C ^
 ( ( N  -  1 )  /  Q ) )  -  1 ) 
 gcd  N )  =  1 )   =>    |-  ( ph  ->  ( Q  pCnt  A )  <_  ( Q  pCnt  ( P  -  1 ) ) )
 
Theorempockthg 12287* The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  B  e.  NN )   &    |-  ( ph  ->  B  <  A )   &    |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1
 ) )   &    |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) ) 
 mod  N )  =  1 
 /\  ( ( ( x ^ ( ( N  -  1 ) 
 /  p ) )  -  1 )  gcd  N )  =  1 ) ) )   =>    |-  ( ph  ->  N  e.  Prime )
 
Theorempockthi 12288 Pocklington's theorem, which gives a sufficient criterion for a number  N to be prime. This is the preferred method for verifying large primes, being much more efficient to compute than trial division. This form has been optimized for application to specific large primes; see pockthg 12287 for a more general closed-form version. (Contributed by Mario Carneiro, 2-Mar-2014.)
 |-  P  e.  Prime   &    |-  G  e.  NN   &    |-  M  =  ( G  x.  P )   &    |-  N  =  ( M  +  1 )   &    |-  D  e.  NN   &    |-  E  e.  NN   &    |-  A  e.  NN   &    |-  M  =  ( D  x.  ( P ^ E ) )   &    |-  D  <  ( P ^ E )   &    |-  ( ( A ^ M )  mod  N )  =  ( 1 
 mod  N )   &    |-  ( ( ( A ^ G )  -  1 )  gcd  N )  =  1   =>    |-  N  e.  Prime
 
5.2.10  Infinite primes theorem
 
Theoreminfpnlem1 12289* Lemma for infpn 12291. The smallest divisor (greater than 1)  M of  N !  + 
1 is a prime greater than  N. (Contributed by NM, 5-May-2005.)
 |-  K  =  ( ( ! `  N )  +  1 )   =>    |-  ( ( N  e.  NN  /\  M  e.  NN )  ->  (
 ( ( 1  <  M  /\  ( K  /  M )  e.  NN )  /\  A. j  e. 
 NN  ( ( 1  <  j  /\  ( K  /  j )  e. 
 NN )  ->  M  <_  j ) )  ->  ( N  <  M  /\  A. j  e.  NN  (
 ( M  /  j
 )  e.  NN  ->  ( j  =  1  \/  j  =  M ) ) ) ) )
 
Theoreminfpnlem2 12290* Lemma for infpn 12291. For any positive integer  N, there exists a prime number  j greater than  N. (Contributed by NM, 5-May-2005.)
 |-  K  =  ( ( ! `  N )  +  1 )   =>    |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  <  j  /\  A. k  e.  NN  (
 ( j  /  k
 )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
 
Theoreminfpn 12291* There exist infinitely many prime numbers: for any positive integer  N, there exists a prime number  j greater than  N. (See infpn2 12389 for the equinumerosity version.) (Contributed by NM, 1-Jun-2006.)
 |-  ( N  e.  NN  ->  E. j  e.  NN  ( N  <  j  /\  A. k  e.  NN  (
 ( j  /  k
 )  e.  NN  ->  ( k  =  1  \/  k  =  j ) ) ) )
 
Theoremprmunb 12292* The primes are unbounded. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( N  e.  NN  ->  E. p  e.  Prime  N  <  p )
 
5.2.11  Fundamental theorem of arithmetic
 
Theorem1arithlem1 12293* Lemma for 1arith 12297. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( N  e.  NN  ->  ( M `  N )  =  ( p  e.  Prime  |->  ( p  pCnt  N ) ) )
 
Theorem1arithlem2 12294* Lemma for 1arith 12297. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( ( N  e.  NN  /\  P  e.  Prime ) 
 ->  ( ( M `  N ) `  P )  =  ( P  pCnt  N ) )
 
Theorem1arithlem3 12295* Lemma for 1arith 12297. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   =>    |-  ( N  e.  NN  ->  ( M `  N ) : Prime --> NN0 )
 
Theorem1arithlem4 12296* Lemma for 1arith 12297. (Contributed by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  G  =  ( y  e.  NN  |->  if ( y  e. 
 Prime ,  ( y ^
 ( F `  y
 ) ) ,  1 ) )   &    |-  ( ph  ->  F : Prime --> NN0 )   &    |-  ( ph  ->  N  e.  NN )   &    |-  (
 ( ph  /\  ( q  e.  Prime  /\  N  <_  q ) )  ->  ( F `  q )  =  0 )   =>    |-  ( ph  ->  E. x  e.  NN  F  =  ( M `  x ) )
 
Theorem1arith 12297* Fundamental theorem of arithmetic, where a prime factorization is represented as a sequence of prime exponents, for which only finitely many primes have nonzero exponent. The function  M maps the set of positive integers one-to-one onto the set of prime factorizations  R. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e " NN )  e.  Fin }   =>    |-  M : NN -1-1-onto-> R
 
Theorem1arith2 12298* Fundamental theorem of arithmetic, where a prime factorization is represented as a finite monotonic 1-based sequence of primes. Every positive integer has a unique prime factorization. Theorem 1.10 in [ApostolNT] p. 17. This is Metamath 100 proof #80. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 30-May-2014.)
 |-  M  =  ( n  e.  NN  |->  ( p  e.  Prime  |->  ( p 
 pCnt  n ) ) )   &    |-  R  =  { e  e.  ( NN0  ^m  Prime )  |  ( `' e " NN )  e.  Fin }   =>    |-  A. z  e.  NN  E! g  e.  R  ( M `  z )  =  g
 
5.2.12  Lagrange's four-square theorem
 
Syntaxcgz 12299 Extend class notation with the set of gaussian integers.
 class  ZZ[_i]
 
Definitiondf-gz 12300 Define the set of gaussian integers, which are complex numbers whose real and imaginary parts are integers. (Note that the  [
_i ] is actually part of the symbol token and has no independent meaning.) (Contributed by Mario Carneiro, 14-Jul-2014.)
 |- 
 ZZ[_i]  =  { x  e.  CC  |  ( ( Re `  x )  e.  ZZ  /\  ( Im `  x )  e.  ZZ ) }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >