ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recrecnq Unicode version

Theorem recrecnq 6943
Description: Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.)
Assertion
Ref Expression
recrecnq  |-  ( A  e.  Q.  ->  ( *Q `  ( *Q `  A ) )  =  A )

Proof of Theorem recrecnq
StepHypRef Expression
1 recclnq 6941 . . . 4  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
2 mulcomnqg 6932 . . . 4  |-  ( ( ( *Q `  A
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  A )  .Q  A
)  =  ( A  .Q  ( *Q `  A ) ) )
31, 2mpancom 413 . . 3  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  .Q  A )  =  ( A  .Q  ( *Q `  A ) ) )
4 recidnq 6942 . . 3  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
53, 4eqtrd 2120 . 2  |-  ( A  e.  Q.  ->  (
( *Q `  A
)  .Q  A )  =  1Q )
6 recmulnqg 6940 . . 3  |-  ( ( ( *Q `  A
)  e.  Q.  /\  A  e.  Q. )  ->  ( ( *Q `  ( *Q `  A ) )  =  A  <->  ( ( *Q `  A )  .Q  A )  =  1Q ) )
71, 6mpancom 413 . 2  |-  ( A  e.  Q.  ->  (
( *Q `  ( *Q `  A ) )  =  A  <->  ( ( *Q `  A )  .Q  A )  =  1Q ) )
85, 7mpbird 165 1  |-  ( A  e.  Q.  ->  ( *Q `  ( *Q `  A ) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289    e. wcel 1438   ` cfv 5010  (class class class)co 5644   Q.cnq 6829   1Qc1q 6830    .Q cmq 6832   *Qcrq 6833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-iord 4191  df-on 4193  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-1o 6173  df-oadd 6177  df-omul 6178  df-er 6282  df-ec 6284  df-qs 6288  df-ni 6853  df-mi 6855  df-mpq 6894  df-enq 6896  df-nqqs 6897  df-mqqs 6899  df-1nqqs 6900  df-rq 6901
This theorem is referenced by:  recexprlemm  7173  recexprlemloc  7180  archrecnq  7212
  Copyright terms: Public domain W3C validator