ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc Unicode version

Theorem recexprlemloc 7779
Description:  B is located. Lemma for recexpr 7786. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemloc  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemloc
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7623 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prnmaxl 7636 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
31, 2sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  r )  e.  ( 1st `  A
) )  ->  E. u  e.  ( 1st `  A
) ( *Q `  r )  <Q  u
)
43adantlr 477 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
5 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  u )
6 elprnql 7629 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
71, 6sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
87ad2ant2r 509 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u
) )  ->  u  e.  Q. )
98adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  Q. )
10 recrecnq 7542 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  ( *Q `  u ) )  =  u )
119, 10syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  =  u )
125, 11breqtrrd 4087 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  ( *Q `  ( *Q `  u ) ) )
13 recclnq 7540 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  u )  e. 
Q. )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  e.  Q. )
15 ltrelnq 7513 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
1615brel 4745 . . . . . . . . . . . . 13  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1817ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1918simprd 114 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  Q. )
20 ltrnqg 7568 . . . . . . . . . 10  |-  ( ( ( *Q `  u
)  e.  Q.  /\  r  e.  Q. )  ->  ( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2114, 19, 20syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2212, 21mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  <Q  r )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  ( 1st `  A ) )
2411, 23eqeltrd 2284 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )
25 breq1 4062 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
y  <Q  r  <->  ( *Q `  u )  <Q  r
) )
26 fveq2 5599 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  u )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  u ) ) )
2726eleq1d 2276 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) )
2825, 27anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  u )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) ) )
2928spcegv 2868 . . . . . . . . . 10  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
30 recexpr.1 . . . . . . . . . . 11  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
3130recexprlemelu 7771 . . . . . . . . . 10  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
3229, 31imbitrrdi 162 . . . . . . . . 9  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  B
) ) )
3314, 32syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( ( *Q
`  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
3422, 24, 33mp2and 433 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  ( 2nd `  B ) )
354, 34rexlimddv 2630 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  B ) )
3635olcd 736 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
37 prnminu 7637 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
381, 37sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  q )  e.  ( 2nd `  A
) )  ->  E. v  e.  ( 2nd `  A
) v  <Q  ( *Q `  q ) )
3938adantlr 477 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
40 elprnqu 7630 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
411, 40sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
4241adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  v  e.  ( 2nd `  A ) )  ->  v  e.  Q. )
4342ad2ant2r 509 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  Q. )
44 recrecnq 7542 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  ( *Q `  v ) )  =  v )
4543, 44syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  =  v )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  <Q  ( *Q `  q ) )
4745, 46eqbrtrd 4081 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) ) 
<Q  ( *Q `  q
) )
4817ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
4948simpld 112 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  Q. )
50 recclnq 7540 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  v )  e. 
Q. )
5143, 50syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  v
)  e.  Q. )
52 ltrnqg 7568 . . . . . . . . . 10  |-  ( ( q  e.  Q.  /\  ( *Q `  v )  e.  Q. )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5349, 51, 52syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5447, 53mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  <Q  ( *Q `  v ) )
55 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  ( 2nd `  A ) )
5645, 55eqeltrd 2284 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  e.  ( 2nd `  A
) )
57 breq2 4063 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  v ) ) )
58 fveq2 5599 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  v )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  v ) ) )
5958eleq1d 2276 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) )
6057, 59anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  v )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) ) )
6160spcegv 2868 . . . . . . . . . 10  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
6230recexprlemell 7770 . . . . . . . . . 10  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
6361, 62imbitrrdi 162 . . . . . . . . 9  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  q  e.  ( 1st `  B
) ) )
6451, 63syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( ( q  <Q 
( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) )  ->  q  e.  ( 1st `  B ) ) )
6554, 56, 64mp2and 433 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  ( 1st `  B ) )
6639, 65rexlimddv 2630 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) )
6766orcd 735 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
68 ltrnqi 7569 . . . . . 6  |-  ( q 
<Q  r  ->  ( *Q
`  r )  <Q 
( *Q `  q
) )
69 prloc 7639 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  <Q  ( *Q `  q ) )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
701, 68, 69syl2an 289 . . . . 5  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
7136, 67, 70mpjaodan 800 . . . 4  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
7271ex 115 . . 3  |-  ( A  e.  P.  ->  (
q  <Q  r  ->  (
q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B
) ) ) )
7372ralrimivw 2582 . 2  |-  ( A  e.  P.  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
7473ralrimivw 2582 1  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   <.cop 3646   class class class wbr 4059   ` cfv 5290   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428   *Qcrq 7432    <Q cltq 7433   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-mi 7454  df-lti 7455  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-inp 7614
This theorem is referenced by:  recexprlempr  7780
  Copyright terms: Public domain W3C validator