ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc Unicode version

Theorem recexprlemloc 7463
Description:  B is located. Lemma for recexpr 7470. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemloc  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemloc
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7307 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prnmaxl 7320 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
31, 2sylan 281 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  r )  e.  ( 1st `  A
) )  ->  E. u  e.  ( 1st `  A
) ( *Q `  r )  <Q  u
)
43adantlr 469 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
5 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  u )
6 elprnql 7313 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
71, 6sylan 281 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
87ad2ant2r 501 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u
) )  ->  u  e.  Q. )
98adantlr 469 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  Q. )
10 recrecnq 7226 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  ( *Q `  u ) )  =  u )
119, 10syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  =  u )
125, 11breqtrrd 3964 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  ( *Q `  ( *Q `  u ) ) )
13 recclnq 7224 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  u )  e. 
Q. )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  e.  Q. )
15 ltrelnq 7197 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
1615brel 4599 . . . . . . . . . . . . 13  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
1716adantl 275 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1817ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1918simprd 113 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  Q. )
20 ltrnqg 7252 . . . . . . . . . 10  |-  ( ( ( *Q `  u
)  e.  Q.  /\  r  e.  Q. )  ->  ( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2114, 19, 20syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2212, 21mpbird 166 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  <Q  r )
23 simprl 521 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  ( 1st `  A ) )
2411, 23eqeltrd 2217 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )
25 breq1 3940 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
y  <Q  r  <->  ( *Q `  u )  <Q  r
) )
26 fveq2 5429 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  u )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  u ) ) )
2726eleq1d 2209 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) )
2825, 27anbi12d 465 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  u )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) ) )
2928spcegv 2777 . . . . . . . . . 10  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
30 recexpr.1 . . . . . . . . . . 11  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
3130recexprlemelu 7455 . . . . . . . . . 10  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
3229, 31syl6ibr 161 . . . . . . . . 9  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  B
) ) )
3314, 32syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( ( *Q
`  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
3422, 24, 33mp2and 430 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  ( 2nd `  B ) )
354, 34rexlimddv 2557 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  B ) )
3635olcd 724 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
37 prnminu 7321 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
381, 37sylan 281 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  q )  e.  ( 2nd `  A
) )  ->  E. v  e.  ( 2nd `  A
) v  <Q  ( *Q `  q ) )
3938adantlr 469 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
40 elprnqu 7314 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
411, 40sylan 281 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
4241adantlr 469 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  v  e.  ( 2nd `  A ) )  ->  v  e.  Q. )
4342ad2ant2r 501 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  Q. )
44 recrecnq 7226 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  ( *Q `  v ) )  =  v )
4543, 44syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  =  v )
46 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  <Q  ( *Q `  q ) )
4745, 46eqbrtrd 3958 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) ) 
<Q  ( *Q `  q
) )
4817ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
4948simpld 111 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  Q. )
50 recclnq 7224 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  v )  e. 
Q. )
5143, 50syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  v
)  e.  Q. )
52 ltrnqg 7252 . . . . . . . . . 10  |-  ( ( q  e.  Q.  /\  ( *Q `  v )  e.  Q. )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5349, 51, 52syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5447, 53mpbird 166 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  <Q  ( *Q `  v ) )
55 simprl 521 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  ( 2nd `  A ) )
5645, 55eqeltrd 2217 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  e.  ( 2nd `  A
) )
57 breq2 3941 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  v ) ) )
58 fveq2 5429 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  v )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  v ) ) )
5958eleq1d 2209 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) )
6057, 59anbi12d 465 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  v )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) ) )
6160spcegv 2777 . . . . . . . . . 10  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
6230recexprlemell 7454 . . . . . . . . . 10  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
6361, 62syl6ibr 161 . . . . . . . . 9  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  q  e.  ( 1st `  B
) ) )
6451, 63syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( ( q  <Q 
( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) )  ->  q  e.  ( 1st `  B ) ) )
6554, 56, 64mp2and 430 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  ( 1st `  B ) )
6639, 65rexlimddv 2557 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) )
6766orcd 723 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
68 ltrnqi 7253 . . . . . 6  |-  ( q 
<Q  r  ->  ( *Q
`  r )  <Q 
( *Q `  q
) )
69 prloc 7323 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  <Q  ( *Q `  q ) )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
701, 68, 69syl2an 287 . . . . 5  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
7136, 67, 70mpjaodan 788 . . . 4  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
7271ex 114 . . 3  |-  ( A  e.  P.  ->  (
q  <Q  r  ->  (
q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B
) ) ) )
7372ralrimivw 2509 . 2  |-  ( A  e.  P.  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
7473ralrimivw 2509 1  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   <.cop 3535   class class class wbr 3937   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112   *Qcrq 7116    <Q cltq 7117   P.cnp 7123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298
This theorem is referenced by:  recexprlempr  7464
  Copyright terms: Public domain W3C validator