ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemloc Unicode version

Theorem recexprlemloc 7698
Description:  B is located. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemloc  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Distinct variable groups:    r, q, x, y, A    B, q,
r, x, y

Proof of Theorem recexprlemloc
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 7542 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
2 prnmaxl 7555 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
31, 2sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  r )  e.  ( 1st `  A
) )  ->  E. u  e.  ( 1st `  A
) ( *Q `  r )  <Q  u
)
43adantlr 477 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  ->  E. u  e.  ( 1st `  A ) ( *Q `  r ) 
<Q  u )
5 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  u )
6 elprnql 7548 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
71, 6sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  u  e.  ( 1st `  A ) )  ->  u  e.  Q. )
87ad2ant2r 509 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u
) )  ->  u  e.  Q. )
98adantlr 477 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  Q. )
10 recrecnq 7461 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  ( *Q `  u ) )  =  u )
119, 10syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  =  u )
125, 11breqtrrd 4061 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  r
)  <Q  ( *Q `  ( *Q `  u ) ) )
13 recclnq 7459 . . . . . . . . . . 11  |-  ( u  e.  Q.  ->  ( *Q `  u )  e. 
Q. )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  e.  Q. )
15 ltrelnq 7432 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
1615brel 4715 . . . . . . . . . . . . 13  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
1716adantl 277 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1817ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
1918simprd 114 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  Q. )
20 ltrnqg 7487 . . . . . . . . . 10  |-  ( ( ( *Q `  u
)  e.  Q.  /\  r  e.  Q. )  ->  ( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2114, 19, 20syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( *Q `  u )  <Q  r  <->  ( *Q `  r ) 
<Q  ( *Q `  ( *Q `  u ) ) ) )
2212, 21mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  u
)  <Q  r )
23 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  ->  u  e.  ( 1st `  A ) )
2411, 23eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )
25 breq1 4036 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
y  <Q  r  <->  ( *Q `  u )  <Q  r
) )
26 fveq2 5558 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  u )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  u ) ) )
2726eleq1d 2265 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  u )  ->  (
( *Q `  y
)  e.  ( 1st `  A )  <->  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) )
2825, 27anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  u )  ->  (
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) )  <->  ( ( *Q `  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) ) ) )
2928spcegv 2852 . . . . . . . . . 10  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  E. y
( y  <Q  r  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) ) )
30 recexpr.1 . . . . . . . . . . 11  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
3130recexprlemelu 7690 . . . . . . . . . 10  |-  ( r  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  r  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
3229, 31imbitrrdi 162 . . . . . . . . 9  |-  ( ( *Q `  u )  e.  Q.  ->  (
( ( *Q `  u )  <Q  r  /\  ( *Q `  ( *Q `  u ) )  e.  ( 1st `  A
) )  ->  r  e.  ( 2nd `  B
) ) )
3314, 32syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
( ( ( *Q
`  u )  <Q 
r  /\  ( *Q `  ( *Q `  u
) )  e.  ( 1st `  A ) )  ->  r  e.  ( 2nd `  B ) ) )
3422, 24, 33mp2and 433 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  r )  e.  ( 1st `  A
) )  /\  (
u  e.  ( 1st `  A )  /\  ( *Q `  r )  <Q  u ) )  -> 
r  e.  ( 2nd `  B ) )
354, 34rexlimddv 2619 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
r  e.  ( 2nd `  B ) )
3635olcd 735 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  r
)  e.  ( 1st `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
37 prnminu 7556 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
381, 37sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( *Q `  q )  e.  ( 2nd `  A
) )  ->  E. v  e.  ( 2nd `  A
) v  <Q  ( *Q `  q ) )
3938adantlr 477 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  ->  E. v  e.  ( 2nd `  A ) v 
<Q  ( *Q `  q
) )
40 elprnqu 7549 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
411, 40sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  v  e.  ( 2nd `  A ) )  -> 
v  e.  Q. )
4241adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  v  e.  ( 2nd `  A ) )  ->  v  e.  Q. )
4342ad2ant2r 509 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  Q. )
44 recrecnq 7461 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  ( *Q `  v ) )  =  v )
4543, 44syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  =  v )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  <Q  ( *Q `  q ) )
4745, 46eqbrtrd 4055 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) ) 
<Q  ( *Q `  q
) )
4817ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  e.  Q.  /\  r  e.  Q. )
)
4948simpld 112 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  Q. )
50 recclnq 7459 . . . . . . . . . . 11  |-  ( v  e.  Q.  ->  ( *Q `  v )  e. 
Q. )
5143, 50syl 14 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  v
)  e.  Q. )
52 ltrnqg 7487 . . . . . . . . . 10  |-  ( ( q  e.  Q.  /\  ( *Q `  v )  e.  Q. )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5349, 51, 52syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( q  <Q  ( *Q `  v )  <->  ( *Q `  ( *Q `  v
) )  <Q  ( *Q `  q ) ) )
5447, 53mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  <Q  ( *Q `  v ) )
55 simprl 529 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
v  e.  ( 2nd `  A ) )
5645, 55eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( *Q `  ( *Q `  v ) )  e.  ( 2nd `  A
) )
57 breq2 4037 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
q  <Q  y  <->  q  <Q  ( *Q `  v ) ) )
58 fveq2 5558 . . . . . . . . . . . . 13  |-  ( y  =  ( *Q `  v )  ->  ( *Q `  y )  =  ( *Q `  ( *Q `  v ) ) )
5958eleq1d 2265 . . . . . . . . . . . 12  |-  ( y  =  ( *Q `  v )  ->  (
( *Q `  y
)  e.  ( 2nd `  A )  <->  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) )
6057, 59anbi12d 473 . . . . . . . . . . 11  |-  ( y  =  ( *Q `  v )  ->  (
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) )  <->  ( q  <Q  ( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) ) ) )
6160spcegv 2852 . . . . . . . . . 10  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  E. y
( q  <Q  y  /\  ( *Q `  y
)  e.  ( 2nd `  A ) ) ) )
6230recexprlemell 7689 . . . . . . . . . 10  |-  ( q  e.  ( 1st `  B
)  <->  E. y ( q 
<Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A
) ) )
6361, 62imbitrrdi 162 . . . . . . . . 9  |-  ( ( *Q `  v )  e.  Q.  ->  (
( q  <Q  ( *Q `  v )  /\  ( *Q `  ( *Q
`  v ) )  e.  ( 2nd `  A
) )  ->  q  e.  ( 1st `  B
) ) )
6451, 63syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
( ( q  <Q 
( *Q `  v
)  /\  ( *Q `  ( *Q `  v
) )  e.  ( 2nd `  A ) )  ->  q  e.  ( 1st `  B ) ) )
6554, 56, 64mp2and 433 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  q  <Q  r )  /\  ( *Q
`  q )  e.  ( 2nd `  A
) )  /\  (
v  e.  ( 2nd `  A )  /\  v  <Q  ( *Q `  q
) ) )  -> 
q  e.  ( 1st `  B ) )
6639, 65rexlimddv 2619 . . . . . 6  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
q  e.  ( 1st `  B ) )
6766orcd 734 . . . . 5  |-  ( ( ( A  e.  P.  /\  q  <Q  r )  /\  ( *Q `  q
)  e.  ( 2nd `  A ) )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
68 ltrnqi 7488 . . . . . 6  |-  ( q 
<Q  r  ->  ( *Q
`  r )  <Q 
( *Q `  q
) )
69 prloc 7558 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  r
)  <Q  ( *Q `  q ) )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
701, 68, 69syl2an 289 . . . . 5  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( ( *Q `  r )  e.  ( 1st `  A )  \/  ( *Q `  q )  e.  ( 2nd `  A ) ) )
7136, 67, 70mpjaodan 799 . . . 4  |-  ( ( A  e.  P.  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) )
7271ex 115 . . 3  |-  ( A  e.  P.  ->  (
q  <Q  r  ->  (
q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B
) ) ) )
7372ralrimivw 2571 . 2  |-  ( A  e.  P.  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
7473ralrimivw 2571 1  |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  B
)  \/  r  e.  ( 2nd `  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   <.cop 3625   class class class wbr 4033   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347   *Qcrq 7351    <Q cltq 7352   P.cnp 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533
This theorem is referenced by:  recexprlempr  7699
  Copyright terms: Public domain W3C validator