ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recidnq Unicode version

Theorem recidnq 6952
Description: A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.)
Assertion
Ref Expression
recidnq  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )

Proof of Theorem recidnq
StepHypRef Expression
1 recclnq 6951 . 2  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
2 eqid 2088 . . 3  |-  ( *Q
`  A )  =  ( *Q `  A
)
3 recmulnqg 6950 . . 3  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( ( *Q `  A )  =  ( *Q `  A )  <-> 
( A  .Q  ( *Q `  A ) )  =  1Q ) )
42, 3mpbii 146 . 2  |-  ( ( A  e.  Q.  /\  ( *Q `  A )  e.  Q. )  -> 
( A  .Q  ( *Q `  A ) )  =  1Q )
51, 4mpdan 412 1  |-  ( A  e.  Q.  ->  ( A  .Q  ( *Q `  A ) )  =  1Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   ` cfv 5015  (class class class)co 5652   Q.cnq 6839   1Qc1q 6840    .Q cmq 6842   *Qcrq 6843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-oadd 6185  df-omul 6186  df-er 6292  df-ec 6294  df-qs 6298  df-ni 6863  df-mi 6865  df-mpq 6904  df-enq 6906  df-nqqs 6907  df-mqqs 6909  df-1nqqs 6910  df-rq 6911
This theorem is referenced by:  recrecnq  6953  rec1nq  6954  halfnqq  6969  prarloclemarch  6977  ltrnqg  6979  addnqprllem  7086  addnqprulem  7087  addnqprl  7088  addnqpru  7089  appdivnq  7122  mulnqprl  7127  mulnqpru  7128  1idprl  7149  1idpru  7150  recexprlem1ssl  7192  recexprlem1ssu  7193  recexprlemss1l  7194  recexprlemss1u  7195  recidpipr  7393
  Copyright terms: Public domain W3C validator