ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archrecnq Unicode version

Theorem archrecnq 7419
Description: Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
Assertion
Ref Expression
archrecnq  |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
Distinct variable group:    A, j

Proof of Theorem archrecnq
StepHypRef Expression
1 recclnq 7148 . . 3  |-  ( A  e.  Q.  ->  ( *Q `  A )  e. 
Q. )
2 archnqq 7173 . . 3  |-  ( ( *Q `  A )  e.  Q.  ->  E. j  e.  N.  ( *Q `  A )  <Q  [ <. j ,  1o >. ]  ~Q  )
31, 2syl 14 . 2  |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  A )  <Q  [ <. j ,  1o >. ]  ~Q  )
4 nnnq 7178 . . . . 5  |-  ( j  e.  N.  ->  [ <. j ,  1o >. ]  ~Q  e.  Q. )
5 ltrnqg 7176 . . . . 5  |-  ( ( ( *Q `  A
)  e.  Q.  /\  [
<. j ,  1o >. ]  ~Q  e.  Q. )  ->  ( ( *Q `  A )  <Q  [ <. j ,  1o >. ]  ~Q  <->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  ( *Q `  ( *Q `  A ) ) ) )
61, 4, 5syl2an 285 . . . 4  |-  ( ( A  e.  Q.  /\  j  e.  N. )  ->  ( ( *Q `  A )  <Q  [ <. j ,  1o >. ]  ~Q  <->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  ( *Q `  ( *Q `  A ) ) ) )
7 recrecnq 7150 . . . . . 6  |-  ( A  e.  Q.  ->  ( *Q `  ( *Q `  A ) )  =  A )
87breq2d 3907 . . . . 5  |-  ( A  e.  Q.  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  ( *Q `  ( *Q `  A ) )  <->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A ) )
98adantr 272 . . . 4  |-  ( ( A  e.  Q.  /\  j  e.  N. )  ->  ( ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q 
( *Q `  ( *Q `  A ) )  <-> 
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A ) )
106, 9bitrd 187 . . 3  |-  ( ( A  e.  Q.  /\  j  e.  N. )  ->  ( ( *Q `  A )  <Q  [ <. j ,  1o >. ]  ~Q  <->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A ) )
1110rexbidva 2408 . 2  |-  ( A  e.  Q.  ->  ( E. j  e.  N.  ( *Q `  A ) 
<Q  [ <. j ,  1o >. ]  ~Q  <->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A ) )
123, 11mpbid 146 1  |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   E.wrex 2391   <.cop 3496   class class class wbr 3895   ` cfv 5081   1oc1o 6260   [cec 6381   N.cnpi 7028    ~Q ceq 7035   Q.cnq 7036   *Qcrq 7040    <Q cltq 7041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-eprel 4171  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-1o 6267  df-oadd 6271  df-omul 6272  df-er 6383  df-ec 6385  df-qs 6389  df-ni 7060  df-pli 7061  df-mi 7062  df-lti 7063  df-mpq 7101  df-enq 7103  df-nqqs 7104  df-mqqs 7106  df-1nqqs 7107  df-rq 7108  df-ltnqqs 7109
This theorem is referenced by:  archrecpr  7420  caucvgprlemm  7424  caucvgprlemloc  7431  caucvgprlemlim  7437  caucvgprprlemml  7450  caucvgprprlemloc  7459
  Copyright terms: Public domain W3C validator