![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspex | GIF version |
Description: Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.) |
Ref | Expression |
---|---|
rspex | ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspvalg 13781 | . 2 ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) | |
2 | rlmfn 13762 | . . . 4 ⊢ ringLMod Fn V | |
3 | elex 2763 | . . . 4 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
4 | funfvex 5548 | . . . . 5 ⊢ ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V) | |
5 | 4 | funfni 5332 | . . . 4 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V) |
6 | 2, 3, 5 | sylancr 414 | . . 3 ⊢ (𝑊 ∈ 𝑉 → (ringLMod‘𝑊) ∈ V) |
7 | lspex 13704 | . . 3 ⊢ ((ringLMod‘𝑊) ∈ V → (LSpan‘(ringLMod‘𝑊)) ∈ V) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝑊 ∈ 𝑉 → (LSpan‘(ringLMod‘𝑊)) ∈ V) |
9 | 1, 8 | eqeltrd 2266 | 1 ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 Vcvv 2752 Fn wfn 5227 ‘cfv 5232 LSpanclspn 13695 ringLModcrglmod 13743 RSpancrsp 13777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1re 7930 ax-addrcl 7933 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-7 9008 df-8 9009 df-ndx 12510 df-slot 12511 df-base 12513 df-sets 12514 df-iress 12515 df-mulr 12596 df-sca 12598 df-vsca 12599 df-ip 12600 df-lsp 13696 df-sra 13744 df-rgmod 13745 df-rsp 13779 |
This theorem is referenced by: znval 13925 znle 13926 znbaslemnn 13928 znbas 13932 |
Copyright terms: Public domain | W3C validator |