ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspex GIF version

Theorem rspex 14403
Description: Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
Assertion
Ref Expression
rspex (𝑊𝑉 → (RSpan‘𝑊) ∈ V)

Proof of Theorem rspex
StepHypRef Expression
1 rspvalg 14401 . 2 (𝑊𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊)))
2 rlmfn 14382 . . . 4 ringLMod Fn V
3 elex 2791 . . . 4 (𝑊𝑉𝑊 ∈ V)
4 funfvex 5620 . . . . 5 ((Fun ringLMod ∧ 𝑊 ∈ dom ringLMod) → (ringLMod‘𝑊) ∈ V)
54funfni 5399 . . . 4 ((ringLMod Fn V ∧ 𝑊 ∈ V) → (ringLMod‘𝑊) ∈ V)
62, 3, 5sylancr 414 . . 3 (𝑊𝑉 → (ringLMod‘𝑊) ∈ V)
7 lspex 14324 . . 3 ((ringLMod‘𝑊) ∈ V → (LSpan‘(ringLMod‘𝑊)) ∈ V)
86, 7syl 14 . 2 (𝑊𝑉 → (LSpan‘(ringLMod‘𝑊)) ∈ V)
91, 8eqeltrd 2286 1 (𝑊𝑉 → (RSpan‘𝑊) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Vcvv 2779   Fn wfn 5289  cfv 5294  LSpanclspn 14315  ringLModcrglmod 14363  RSpancrsp 14397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-mulr 13090  df-sca 13092  df-vsca 13093  df-ip 13094  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-rsp 14399
This theorem is referenced by:  znval  14565  znle  14566  znbaslemnn  14568  znbas  14573  znzrhval  14576  znzrhfo  14577
  Copyright terms: Public domain W3C validator