ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlmex Unicode version

Theorem lidlmex 13791
Description: Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
Hypothesis
Ref Expression
lidlmex.i  |-  I  =  (LIdeal `  W )
Assertion
Ref Expression
lidlmex  |-  ( U  e.  I  ->  W  e.  _V )

Proof of Theorem lidlmex
Dummy variables  a  b  j  s  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lssm 13669 . . . . . . 7  |-  LSubSp  =  ( w  e.  _V  |->  { s  e.  ~P ( Base `  w )  |  ( E. j  j  e.  s  /\  A. x  e.  ( Base `  (Scalar `  w )
) A. a  e.  s  A. b  e.  s  ( ( x ( .s `  w
) a ) ( +g  `  w ) b )  e.  s ) } )
21funmpt2 5274 . . . . . 6  |-  Fun  LSubSp
3 rlmfn 13769 . . . . . . 7  |- ringLMod  Fn  _V
4 fnfun 5332 . . . . . . 7  |-  (ringLMod  Fn  _V  ->  Fun ringLMod )
53, 4ax-mp 5 . . . . . 6  |-  Fun ringLMod
6 funco 5275 . . . . . 6  |-  ( ( Fun  LSubSp  /\  Fun ringLMod )  ->  Fun  ( LSubSp  o. ringLMod ) )
72, 5, 6mp2an 426 . . . . 5  |-  Fun  ( LSubSp  o. ringLMod )
8 df-lidl 13785 . . . . . 6  |- LIdeal  =  (
LSubSp  o. ringLMod )
98funeqi 5256 . . . . 5  |-  ( Fun LIdeal  <->  Fun  ( LSubSp  o. ringLMod ) )
107, 9mpbir 146 . . . 4  |-  Fun LIdeal
11 funrel 5252 . . . 4  |-  ( Fun LIdeal  ->  Rel LIdeal )
1210, 11ax-mp 5 . . 3  |-  Rel LIdeal
13 lidlmex.i . . . . 5  |-  I  =  (LIdeal `  W )
1413eleq2i 2256 . . . 4  |-  ( U  e.  I  <->  U  e.  (LIdeal `  W ) )
1514biimpi 120 . . 3  |-  ( U  e.  I  ->  U  e.  (LIdeal `  W )
)
16 relelfvdm 5566 . . 3  |-  ( ( Rel LIdeal  /\  U  e.  (LIdeal `  W ) )  ->  W  e.  dom LIdeal )
1712, 15, 16sylancr 414 . 2  |-  ( U  e.  I  ->  W  e.  dom LIdeal )
1817elexd 2765 1  |-  ( U  e.  I  ->  W  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   {crab 2472   _Vcvv 2752   ~Pcpw 3590   dom cdm 4644    o. ccom 4648   Rel wrel 4649   Fun wfun 5229    Fn wfn 5230   ` cfv 5235  (class class class)co 5896   Basecbs 12512   +g cplusg 12589  Scalarcsca 12592   .scvsca 12593   LSubSpclss 13668  ringLModcrglmod 13750  LIdealclidl 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-mulr 12603  df-sca 12605  df-vsca 12606  df-ip 12607  df-lssm 13669  df-sra 13751  df-rgmod 13752  df-lidl 13785
This theorem is referenced by:  lidlss  13792  lidlssbas  13793  lidlbas  13794  islidlm  13795  2idlelb  13820
  Copyright terms: Public domain W3C validator