ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspvalg Unicode version

Theorem rspvalg 14267
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
rspvalg  |-  ( W  e.  V  ->  (RSpan `  W )  =  (
LSpan `  (ringLMod `  W
) ) )

Proof of Theorem rspvalg
StepHypRef Expression
1 df-rsp 14265 . . 3  |- RSpan  =  (
LSpan  o. ringLMod )
21fveq1i 5579 . 2  |-  (RSpan `  W )  =  ( ( LSpan  o. ringLMod ) `  W )
3 rlmfn 14248 . . 3  |- ringLMod  Fn  _V
4 elex 2783 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
5 fvco2 5650 . . 3  |-  ( (ringLMod  Fn  _V  /\  W  e. 
_V )  ->  (
( LSpan  o. ringLMod ) `  W
)  =  ( LSpan `  (ringLMod `  W )
) )
63, 4, 5sylancr 414 . 2  |-  ( W  e.  V  ->  (
( LSpan  o. ringLMod ) `  W
)  =  ( LSpan `  (ringLMod `  W )
) )
72, 6eqtrid 2250 1  |-  ( W  e.  V  ->  (RSpan `  W )  =  (
LSpan `  (ringLMod `  W
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    o. ccom 4680    Fn wfn 5267   ` cfv 5272   LSpanclspn 14181  ringLModcrglmod 14229  RSpancrsp 14263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-5 9100  df-6 9101  df-7 9102  df-8 9103  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-mulr 12956  df-sca 12958  df-vsca 12959  df-ip 12960  df-sra 14230  df-rgmod 14231  df-rsp 14265
This theorem is referenced by:  rspex  14269  rspcl  14286  rspssid  14287  rsp0  14288  rspssp  14289  lidlrsppropdg  14290  rspsn  14329
  Copyright terms: Public domain W3C validator