ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg Unicode version

Theorem lidlrsppropdg 13975
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
lidlpropdg.k  |-  ( ph  ->  K  e.  X )
lidlpropdg.l  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lidlrsppropdg  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y   
x, W, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lidlpropdg.k . . . . . 6  |-  ( ph  ->  K  e.  X )
3 rlmbasg 13935 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (ringLMod `  K ) ) )
42, 3syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (ringLMod `  K )
) )
51, 4eqtrd 2226 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
6 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
7 lidlpropdg.l . . . . . 6  |-  ( ph  ->  L  e.  Y )
8 rlmbasg 13935 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (ringLMod `  L ) ) )
97, 8syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (ringLMod `  L )
) )
106, 9eqtrd 2226 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
11 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
12 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
13 rlmplusgg 13936 . . . . . . 7  |-  ( K  e.  X  ->  ( +g  `  K )  =  ( +g  `  (ringLMod `  K ) ) )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  (ringLMod `  K )
) )
1514oveqdr 5938 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  (ringLMod `  K
) ) y ) )
16 rlmplusgg 13936 . . . . . . 7  |-  ( L  e.  Y  ->  ( +g  `  L )  =  ( +g  `  (ringLMod `  L ) ) )
177, 16syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  L
)  =  ( +g  `  (ringLMod `  L )
) )
1817oveqdr 5938 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  (ringLMod `  L
) ) y ) )
1912, 15, 183eqtr3d 2234 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
20 rlmvscag 13941 . . . . . . 7  |-  ( K  e.  X  ->  ( .r `  K )  =  ( .s `  (ringLMod `  K ) ) )
212, 20syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( .s
`  (ringLMod `  K )
) )
2221oveqdr 5938 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .s `  (ringLMod `  K ) ) y ) )
23 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
2422, 23eqeltrrd 2271 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
25 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
26 rlmvscag 13941 . . . . . . 7  |-  ( L  e.  Y  ->  ( .r `  L )  =  ( .s `  (ringLMod `  L ) ) )
277, 26syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( .s
`  (ringLMod `  L )
) )
2827oveqdr 5938 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .s `  (ringLMod `  L ) ) y ) )
2925, 22, 283eqtr3d 2234 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
30 rlmscabas 13940 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (Scalar `  (ringLMod `  K )
) ) )
312, 30syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
321, 31eqtrd 2226 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
33 rlmscabas 13940 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (Scalar `  (ringLMod `  L )
) ) )
347, 33syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
356, 34eqtrd 2226 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
36 rlmfn 13933 . . . . 5  |- ringLMod  Fn  _V
372elexd 2773 . . . . 5  |-  ( ph  ->  K  e.  _V )
38 funfvex 5563 . . . . . 6  |-  ( ( Fun ringLMod  /\  K  e.  dom ringLMod )  ->  (ringLMod `  K )  e.  _V )
3938funfni 5346 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  K  e. 
_V )  ->  (ringLMod `  K )  e.  _V )
4036, 37, 39sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
417elexd 2773 . . . . 5  |-  ( ph  ->  L  e.  _V )
42 funfvex 5563 . . . . . 6  |-  ( ( Fun ringLMod  /\  L  e.  dom ringLMod )  ->  (ringLMod `  L )  e.  _V )
4342funfni 5346 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  L  e. 
_V )  ->  (ringLMod `  L )  e.  _V )
4436, 41, 43sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 13911 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
46 lidlvalg 13951 . . . 4  |-  ( K  e.  X  ->  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) ) )
472, 46syl 14 . . 3  |-  ( ph  ->  (LIdeal `  K )  =  ( LSubSp `  (ringLMod `  K ) ) )
48 lidlvalg 13951 . . . 4  |-  ( L  e.  Y  ->  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) ) )
497, 48syl 14 . . 3  |-  ( ph  ->  (LIdeal `  L )  =  ( LSubSp `  (ringLMod `  L ) ) )
5045, 47, 493eqtr4d 2236 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 13912 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
52 rspvalg 13952 . . . 4  |-  ( K  e.  X  ->  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) ) )
532, 52syl 14 . . 3  |-  ( ph  ->  (RSpan `  K )  =  ( LSpan `  (ringLMod `  K ) ) )
54 rspvalg 13952 . . . 4  |-  ( L  e.  Y  ->  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) ) )
557, 54syl 14 . . 3  |-  ( ph  ->  (RSpan `  L )  =  ( LSpan `  (ringLMod `  L ) ) )
5651, 53, 553eqtr4d 2236 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
5750, 56jca 306 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153    Fn wfn 5241   ` cfv 5246  (class class class)co 5910   Basecbs 12608   +g cplusg 12685   .rcmulr 12686  Scalarcsca 12688   .scvsca 12689   LSubSpclss 13832   LSpanclspn 13866  ringLModcrglmod 13914  LIdealclidl 13947  RSpancrsp 13948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-pre-ltirr 7974  ax-pre-lttrn 7976  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-ov 5913  df-oprab 5914  df-mpo 5915  df-pnf 8046  df-mnf 8047  df-ltxr 8049  df-inn 8973  df-2 9031  df-3 9032  df-4 9033  df-5 9034  df-6 9035  df-7 9036  df-8 9037  df-ndx 12611  df-slot 12612  df-base 12614  df-sets 12615  df-iress 12616  df-plusg 12698  df-mulr 12699  df-sca 12701  df-vsca 12702  df-ip 12703  df-lssm 13833  df-lsp 13867  df-sra 13915  df-rgmod 13916  df-lidl 13949  df-rsp 13950
This theorem is referenced by:  crngridl  14010
  Copyright terms: Public domain W3C validator