ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg Unicode version

Theorem lidlrsppropdg 14467
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
lidlpropdg.k  |-  ( ph  ->  K  e.  X )
lidlpropdg.l  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lidlrsppropdg  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y   
x, W, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lidlpropdg.k . . . . . 6  |-  ( ph  ->  K  e.  X )
3 rlmbasg 14427 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (ringLMod `  K ) ) )
42, 3syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (ringLMod `  K )
) )
51, 4eqtrd 2262 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
6 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
7 lidlpropdg.l . . . . . 6  |-  ( ph  ->  L  e.  Y )
8 rlmbasg 14427 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (ringLMod `  L ) ) )
97, 8syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (ringLMod `  L )
) )
106, 9eqtrd 2262 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
11 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
12 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
13 rlmplusgg 14428 . . . . . . 7  |-  ( K  e.  X  ->  ( +g  `  K )  =  ( +g  `  (ringLMod `  K ) ) )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  (ringLMod `  K )
) )
1514oveqdr 6035 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  (ringLMod `  K
) ) y ) )
16 rlmplusgg 14428 . . . . . . 7  |-  ( L  e.  Y  ->  ( +g  `  L )  =  ( +g  `  (ringLMod `  L ) ) )
177, 16syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  L
)  =  ( +g  `  (ringLMod `  L )
) )
1817oveqdr 6035 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  (ringLMod `  L
) ) y ) )
1912, 15, 183eqtr3d 2270 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
20 rlmvscag 14433 . . . . . . 7  |-  ( K  e.  X  ->  ( .r `  K )  =  ( .s `  (ringLMod `  K ) ) )
212, 20syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( .s
`  (ringLMod `  K )
) )
2221oveqdr 6035 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .s `  (ringLMod `  K ) ) y ) )
23 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
2422, 23eqeltrrd 2307 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
25 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
26 rlmvscag 14433 . . . . . . 7  |-  ( L  e.  Y  ->  ( .r `  L )  =  ( .s `  (ringLMod `  L ) ) )
277, 26syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( .s
`  (ringLMod `  L )
) )
2827oveqdr 6035 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .s `  (ringLMod `  L ) ) y ) )
2925, 22, 283eqtr3d 2270 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
30 rlmscabas 14432 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (Scalar `  (ringLMod `  K )
) ) )
312, 30syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
321, 31eqtrd 2262 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
33 rlmscabas 14432 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (Scalar `  (ringLMod `  L )
) ) )
347, 33syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
356, 34eqtrd 2262 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
36 rlmfn 14425 . . . . 5  |- ringLMod  Fn  _V
372elexd 2813 . . . . 5  |-  ( ph  ->  K  e.  _V )
38 funfvex 5646 . . . . . 6  |-  ( ( Fun ringLMod  /\  K  e.  dom ringLMod )  ->  (ringLMod `  K )  e.  _V )
3938funfni 5423 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  K  e. 
_V )  ->  (ringLMod `  K )  e.  _V )
4036, 37, 39sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
417elexd 2813 . . . . 5  |-  ( ph  ->  L  e.  _V )
42 funfvex 5646 . . . . . 6  |-  ( ( Fun ringLMod  /\  L  e.  dom ringLMod )  ->  (ringLMod `  L )  e.  _V )
4342funfni 5423 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  L  e. 
_V )  ->  (ringLMod `  L )  e.  _V )
4436, 41, 43sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 14403 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
46 lidlvalg 14443 . . . 4  |-  ( K  e.  X  ->  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) ) )
472, 46syl 14 . . 3  |-  ( ph  ->  (LIdeal `  K )  =  ( LSubSp `  (ringLMod `  K ) ) )
48 lidlvalg 14443 . . . 4  |-  ( L  e.  Y  ->  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) ) )
497, 48syl 14 . . 3  |-  ( ph  ->  (LIdeal `  L )  =  ( LSubSp `  (ringLMod `  L ) ) )
5045, 47, 493eqtr4d 2272 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 14404 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
52 rspvalg 14444 . . . 4  |-  ( K  e.  X  ->  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) ) )
532, 52syl 14 . . 3  |-  ( ph  ->  (RSpan `  K )  =  ( LSpan `  (ringLMod `  K ) ) )
54 rspvalg 14444 . . . 4  |-  ( L  e.  Y  ->  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) ) )
557, 54syl 14 . . 3  |-  ( ph  ->  (RSpan `  L )  =  ( LSpan `  (ringLMod `  L ) ) )
5651, 53, 553eqtr4d 2272 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
5750, 56jca 306 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197    Fn wfn 5313   ` cfv 5318  (class class class)co 6007   Basecbs 13040   +g cplusg 13118   .rcmulr 13119  Scalarcsca 13121   .scvsca 13122   LSubSpclss 14324   LSpanclspn 14358  ringLModcrglmod 14406  LIdealclidl 14439  RSpancrsp 14440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-lssm 14325  df-lsp 14359  df-sra 14407  df-rgmod 14408  df-lidl 14441  df-rsp 14442
This theorem is referenced by:  crngridl  14502
  Copyright terms: Public domain W3C validator