ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg Unicode version

Theorem lidlrsppropdg 14027
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
lidlpropdg.k  |-  ( ph  ->  K  e.  X )
lidlpropdg.l  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lidlrsppropdg  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y   
x, W, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lidlpropdg.k . . . . . 6  |-  ( ph  ->  K  e.  X )
3 rlmbasg 13987 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (ringLMod `  K ) ) )
42, 3syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (ringLMod `  K )
) )
51, 4eqtrd 2229 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
6 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
7 lidlpropdg.l . . . . . 6  |-  ( ph  ->  L  e.  Y )
8 rlmbasg 13987 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (ringLMod `  L ) ) )
97, 8syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (ringLMod `  L )
) )
106, 9eqtrd 2229 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
11 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
12 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
13 rlmplusgg 13988 . . . . . . 7  |-  ( K  e.  X  ->  ( +g  `  K )  =  ( +g  `  (ringLMod `  K ) ) )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  (ringLMod `  K )
) )
1514oveqdr 5950 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  (ringLMod `  K
) ) y ) )
16 rlmplusgg 13988 . . . . . . 7  |-  ( L  e.  Y  ->  ( +g  `  L )  =  ( +g  `  (ringLMod `  L ) ) )
177, 16syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  L
)  =  ( +g  `  (ringLMod `  L )
) )
1817oveqdr 5950 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  (ringLMod `  L
) ) y ) )
1912, 15, 183eqtr3d 2237 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
20 rlmvscag 13993 . . . . . . 7  |-  ( K  e.  X  ->  ( .r `  K )  =  ( .s `  (ringLMod `  K ) ) )
212, 20syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( .s
`  (ringLMod `  K )
) )
2221oveqdr 5950 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .s `  (ringLMod `  K ) ) y ) )
23 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
2422, 23eqeltrrd 2274 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
25 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
26 rlmvscag 13993 . . . . . . 7  |-  ( L  e.  Y  ->  ( .r `  L )  =  ( .s `  (ringLMod `  L ) ) )
277, 26syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( .s
`  (ringLMod `  L )
) )
2827oveqdr 5950 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .s `  (ringLMod `  L ) ) y ) )
2925, 22, 283eqtr3d 2237 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
30 rlmscabas 13992 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (Scalar `  (ringLMod `  K )
) ) )
312, 30syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
321, 31eqtrd 2229 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
33 rlmscabas 13992 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (Scalar `  (ringLMod `  L )
) ) )
347, 33syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
356, 34eqtrd 2229 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
36 rlmfn 13985 . . . . 5  |- ringLMod  Fn  _V
372elexd 2776 . . . . 5  |-  ( ph  ->  K  e.  _V )
38 funfvex 5575 . . . . . 6  |-  ( ( Fun ringLMod  /\  K  e.  dom ringLMod )  ->  (ringLMod `  K )  e.  _V )
3938funfni 5358 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  K  e. 
_V )  ->  (ringLMod `  K )  e.  _V )
4036, 37, 39sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
417elexd 2776 . . . . 5  |-  ( ph  ->  L  e.  _V )
42 funfvex 5575 . . . . . 6  |-  ( ( Fun ringLMod  /\  L  e.  dom ringLMod )  ->  (ringLMod `  L )  e.  _V )
4342funfni 5358 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  L  e. 
_V )  ->  (ringLMod `  L )  e.  _V )
4436, 41, 43sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 13963 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
46 lidlvalg 14003 . . . 4  |-  ( K  e.  X  ->  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) ) )
472, 46syl 14 . . 3  |-  ( ph  ->  (LIdeal `  K )  =  ( LSubSp `  (ringLMod `  K ) ) )
48 lidlvalg 14003 . . . 4  |-  ( L  e.  Y  ->  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) ) )
497, 48syl 14 . . 3  |-  ( ph  ->  (LIdeal `  L )  =  ( LSubSp `  (ringLMod `  L ) ) )
5045, 47, 493eqtr4d 2239 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 13964 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
52 rspvalg 14004 . . . 4  |-  ( K  e.  X  ->  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) ) )
532, 52syl 14 . . 3  |-  ( ph  ->  (RSpan `  K )  =  ( LSpan `  (ringLMod `  K ) ) )
54 rspvalg 14004 . . . 4  |-  ( L  e.  Y  ->  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) ) )
557, 54syl 14 . . 3  |-  ( ph  ->  (RSpan `  L )  =  ( LSpan `  (ringLMod `  L ) ) )
5651, 53, 553eqtr4d 2239 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
5750, 56jca 306 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12654   +g cplusg 12731   .rcmulr 12732  Scalarcsca 12734   .scvsca 12735   LSubSpclss 13884   LSpanclspn 13918  ringLModcrglmod 13966  LIdealclidl 13999  RSpancrsp 14000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-sca 12747  df-vsca 12748  df-ip 12749  df-lssm 13885  df-lsp 13919  df-sra 13967  df-rgmod 13968  df-lidl 14001  df-rsp 14002
This theorem is referenced by:  crngridl  14062
  Copyright terms: Public domain W3C validator