ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlrsppropdg Unicode version

Theorem lidlrsppropdg 14307
Description: The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
lidlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
lidlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
lidlpropd.3  |-  ( ph  ->  B  C_  W )
lidlpropd.4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
lidlpropd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
lidlpropd.6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
lidlpropdg.k  |-  ( ph  ->  K  e.  X )
lidlpropdg.l  |-  ( ph  ->  L  e.  Y )
Assertion
Ref Expression
lidlrsppropdg  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y   
x, W, y
Allowed substitution hints:    X( x, y)    Y( x, y)

Proof of Theorem lidlrsppropdg
StepHypRef Expression
1 lidlpropd.1 . . . . 5  |-  ( ph  ->  B  =  ( Base `  K ) )
2 lidlpropdg.k . . . . . 6  |-  ( ph  ->  K  e.  X )
3 rlmbasg 14267 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (ringLMod `  K ) ) )
42, 3syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (ringLMod `  K )
) )
51, 4eqtrd 2239 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  K )
) )
6 lidlpropd.2 . . . . 5  |-  ( ph  ->  B  =  ( Base `  L ) )
7 lidlpropdg.l . . . . . 6  |-  ( ph  ->  L  e.  Y )
8 rlmbasg 14267 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (ringLMod `  L ) ) )
97, 8syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (ringLMod `  L )
) )
106, 9eqtrd 2239 . . . 4  |-  ( ph  ->  B  =  ( Base `  (ringLMod `  L )
) )
11 lidlpropd.3 . . . 4  |-  ( ph  ->  B  C_  W )
12 lidlpropd.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
13 rlmplusgg 14268 . . . . . . 7  |-  ( K  e.  X  ->  ( +g  `  K )  =  ( +g  `  (ringLMod `  K ) ) )
142, 13syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  K
)  =  ( +g  `  (ringLMod `  K )
) )
1514oveqdr 5982 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  (ringLMod `  K
) ) y ) )
16 rlmplusgg 14268 . . . . . . 7  |-  ( L  e.  Y  ->  ( +g  `  L )  =  ( +g  `  (ringLMod `  L ) ) )
177, 16syl 14 . . . . . 6  |-  ( ph  ->  ( +g  `  L
)  =  ( +g  `  (ringLMod `  L )
) )
1817oveqdr 5982 . . . . 5  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  L ) y )  =  ( x ( +g  `  (ringLMod `  L
) ) y ) )
1912, 15, 183eqtr3d 2247 . . . 4  |-  ( (
ph  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( x ( +g  `  (ringLMod `  K )
) y )  =  ( x ( +g  `  (ringLMod `  L )
) y ) )
20 rlmvscag 14273 . . . . . . 7  |-  ( K  e.  X  ->  ( .r `  K )  =  ( .s `  (ringLMod `  K ) ) )
212, 20syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  K
)  =  ( .s
`  (ringLMod `  K )
) )
2221oveqdr 5982 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .s `  (ringLMod `  K ) ) y ) )
23 lidlpropd.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  e.  W )
2422, 23eqeltrrd 2284 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  e.  W )
25 lidlpropd.6 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
26 rlmvscag 14273 . . . . . . 7  |-  ( L  e.  Y  ->  ( .r `  L )  =  ( .s `  (ringLMod `  L ) ) )
277, 26syl 14 . . . . . 6  |-  ( ph  ->  ( .r `  L
)  =  ( .s
`  (ringLMod `  L )
) )
2827oveqdr 5982 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  L ) y )  =  ( x ( .s `  (ringLMod `  L ) ) y ) )
2925, 22, 283eqtr3d 2247 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .s
`  (ringLMod `  K )
) y )  =  ( x ( .s
`  (ringLMod `  L )
) y ) )
30 rlmscabas 14272 . . . . . 6  |-  ( K  e.  X  ->  ( Base `  K )  =  ( Base `  (Scalar `  (ringLMod `  K )
) ) )
312, 30syl 14 . . . . 5  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
321, 31eqtrd 2239 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  K
) ) ) )
33 rlmscabas 14272 . . . . . 6  |-  ( L  e.  Y  ->  ( Base `  L )  =  ( Base `  (Scalar `  (ringLMod `  L )
) ) )
347, 33syl 14 . . . . 5  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
356, 34eqtrd 2239 . . . 4  |-  ( ph  ->  B  =  ( Base `  (Scalar `  (ringLMod `  L
) ) ) )
36 rlmfn 14265 . . . . 5  |- ringLMod  Fn  _V
372elexd 2787 . . . . 5  |-  ( ph  ->  K  e.  _V )
38 funfvex 5603 . . . . . 6  |-  ( ( Fun ringLMod  /\  K  e.  dom ringLMod )  ->  (ringLMod `  K )  e.  _V )
3938funfni 5382 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  K  e. 
_V )  ->  (ringLMod `  K )  e.  _V )
4036, 37, 39sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  K )  e.  _V )
417elexd 2787 . . . . 5  |-  ( ph  ->  L  e.  _V )
42 funfvex 5603 . . . . . 6  |-  ( ( Fun ringLMod  /\  L  e.  dom ringLMod )  ->  (ringLMod `  L )  e.  _V )
4342funfni 5382 . . . . 5  |-  ( (ringLMod  Fn  _V  /\  L  e. 
_V )  ->  (ringLMod `  L )  e.  _V )
4436, 41, 43sylancr 414 . . . 4  |-  ( ph  ->  (ringLMod `  L )  e.  _V )
455, 10, 11, 19, 24, 29, 32, 35, 40, 44lsspropdg 14243 . . 3  |-  ( ph  ->  ( LSubSp `  (ringLMod `  K
) )  =  (
LSubSp `  (ringLMod `  L
) ) )
46 lidlvalg 14283 . . . 4  |-  ( K  e.  X  ->  (LIdeal `  K )  =  (
LSubSp `  (ringLMod `  K
) ) )
472, 46syl 14 . . 3  |-  ( ph  ->  (LIdeal `  K )  =  ( LSubSp `  (ringLMod `  K ) ) )
48 lidlvalg 14283 . . . 4  |-  ( L  e.  Y  ->  (LIdeal `  L )  =  (
LSubSp `  (ringLMod `  L
) ) )
497, 48syl 14 . . 3  |-  ( ph  ->  (LIdeal `  L )  =  ( LSubSp `  (ringLMod `  L ) ) )
5045, 47, 493eqtr4d 2249 . 2  |-  ( ph  ->  (LIdeal `  K )  =  (LIdeal `  L )
)
515, 10, 11, 19, 24, 29, 32, 35, 40, 44lsppropd 14244 . . 3  |-  ( ph  ->  ( LSpan `  (ringLMod `  K
) )  =  (
LSpan `  (ringLMod `  L
) ) )
52 rspvalg 14284 . . . 4  |-  ( K  e.  X  ->  (RSpan `  K )  =  (
LSpan `  (ringLMod `  K
) ) )
532, 52syl 14 . . 3  |-  ( ph  ->  (RSpan `  K )  =  ( LSpan `  (ringLMod `  K ) ) )
54 rspvalg 14284 . . . 4  |-  ( L  e.  Y  ->  (RSpan `  L )  =  (
LSpan `  (ringLMod `  L
) ) )
557, 54syl 14 . . 3  |-  ( ph  ->  (RSpan `  L )  =  ( LSpan `  (ringLMod `  L ) ) )
5651, 53, 553eqtr4d 2249 . 2  |-  ( ph  ->  (RSpan `  K )  =  (RSpan `  L )
)
5750, 56jca 306 1  |-  ( ph  ->  ( (LIdeal `  K
)  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3168    Fn wfn 5272   ` cfv 5277  (class class class)co 5954   Basecbs 12882   +g cplusg 12959   .rcmulr 12960  Scalarcsca 12962   .scvsca 12963   LSubSpclss 14164   LSpanclspn 14198  ringLModcrglmod 14246  LIdealclidl 14279  RSpancrsp 14280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977  df-lssm 14165  df-lsp 14199  df-sra 14247  df-rgmod 14248  df-lidl 14281  df-rsp 14282
This theorem is referenced by:  crngridl  14342
  Copyright terms: Public domain W3C validator