| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspvalg | GIF version | ||
| Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| Ref | Expression |
|---|---|
| rspvalg | ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rsp 14317 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
| 2 | 1 | fveq1i 5595 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
| 3 | rlmfn 14300 | . . 3 ⊢ ringLMod Fn V | |
| 4 | elex 2785 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
| 5 | fvco2 5666 | . . 3 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))) | |
| 6 | 3, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
| 7 | 2, 6 | eqtrid 2251 | 1 ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∘ ccom 4692 Fn wfn 5280 ‘cfv 5285 LSpanclspn 14233 ringLModcrglmod 14281 RSpancrsp 14315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-mulr 13008 df-sca 13010 df-vsca 13011 df-ip 13012 df-sra 14282 df-rgmod 14283 df-rsp 14317 |
| This theorem is referenced by: rspex 14321 rspcl 14338 rspssid 14339 rsp0 14340 rspssp 14341 lidlrsppropdg 14342 rspsn 14381 |
| Copyright terms: Public domain | W3C validator |