![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspvalg | GIF version |
Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
rspvalg | ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rsp 13969 | . . 3 ⊢ RSpan = (LSpan ∘ ringLMod) | |
2 | 1 | fveq1i 5556 | . 2 ⊢ (RSpan‘𝑊) = ((LSpan ∘ ringLMod)‘𝑊) |
3 | rlmfn 13952 | . . 3 ⊢ ringLMod Fn V | |
4 | elex 2771 | . . 3 ⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) | |
5 | fvco2 5627 | . . 3 ⊢ ((ringLMod Fn V ∧ 𝑊 ∈ V) → ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))) | |
6 | 3, 4, 5 | sylancr 414 | . 2 ⊢ (𝑊 ∈ 𝑉 → ((LSpan ∘ ringLMod)‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
7 | 2, 6 | eqtrid 2238 | 1 ⊢ (𝑊 ∈ 𝑉 → (RSpan‘𝑊) = (LSpan‘(ringLMod‘𝑊))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∘ ccom 4664 Fn wfn 5250 ‘cfv 5255 LSpanclspn 13885 ringLModcrglmod 13933 RSpancrsp 13967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1re 7968 ax-addrcl 7971 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-mulr 12712 df-sca 12714 df-vsca 12715 df-ip 12716 df-sra 13934 df-rgmod 13935 df-rsp 13969 |
This theorem is referenced by: rspex 13973 rspcl 13990 rspssid 13991 rsp0 13992 rspssp 13993 lidlrsppropdg 13994 rspsn 14033 |
Copyright terms: Public domain | W3C validator |