ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metss2 Unicode version

Theorem metss2 14842
Description: If the metric  D is "strongly finer" than  C (meaning that there is a positive real constant 
R such that  C ( x ,  y )  <_  R  x.  D (
x ,  y )), then  D generates a finer topology. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they generate the same topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
metequiv.3  |-  J  =  ( MetOpen `  C )
metequiv.4  |-  K  =  ( MetOpen `  D )
metss2.1  |-  ( ph  ->  C  e.  ( Met `  X ) )
metss2.2  |-  ( ph  ->  D  e.  ( Met `  X ) )
metss2.3  |-  ( ph  ->  R  e.  RR+ )
metss2.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
Assertion
Ref Expression
metss2  |-  ( ph  ->  J  C_  K )
Distinct variable groups:    x, y, C   
x, J, y    x, K, y    y, R    x, D, y    ph, x, y   
x, X, y
Allowed substitution hint:    R( x)

Proof of Theorem metss2
Dummy variables  s  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( x  e.  X  /\  r  e.  RR+ )  -> 
r  e.  RR+ )
2 metss2.3 . . . . 5  |-  ( ph  ->  R  e.  RR+ )
3 rpdivcl 9773 . . . . 5  |-  ( ( r  e.  RR+  /\  R  e.  RR+ )  ->  (
r  /  R )  e.  RR+ )
41, 2, 3syl2anr 290 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( r  /  R
)  e.  RR+ )
5 metequiv.3 . . . . 5  |-  J  =  ( MetOpen `  C )
6 metequiv.4 . . . . 5  |-  K  =  ( MetOpen `  D )
7 metss2.1 . . . . 5  |-  ( ph  ->  C  e.  ( Met `  X ) )
8 metss2.2 . . . . 5  |-  ( ph  ->  D  e.  ( Met `  X ) )
9 metss2.4 . . . . 5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  -> 
( x C y )  <_  ( R  x.  ( x D y ) ) )
105, 6, 7, 8, 2, 9metss2lem 14841 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  -> 
( x ( ball `  D ) ( r  /  R ) ) 
C_  ( x (
ball `  C )
r ) )
11 oveq2 5933 . . . . . 6  |-  ( s  =  ( r  /  R )  ->  (
x ( ball `  D
) s )  =  ( x ( ball `  D ) ( r  /  R ) ) )
1211sseq1d 3213 . . . . 5  |-  ( s  =  ( r  /  R )  ->  (
( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r )  <->  ( x
( ball `  D )
( r  /  R
) )  C_  (
x ( ball `  C
) r ) ) )
1312rspcev 2868 . . . 4  |-  ( ( ( r  /  R
)  e.  RR+  /\  (
x ( ball `  D
) ( r  /  R ) )  C_  ( x ( ball `  C ) r ) )  ->  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) )
144, 10, 13syl2anc 411 . . 3  |-  ( (
ph  /\  ( x  e.  X  /\  r  e.  RR+ ) )  ->  E. s  e.  RR+  (
x ( ball `  D
) s )  C_  ( x ( ball `  C ) r ) )
1514ralrimivva 2579 . 2  |-  ( ph  ->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) )
16 metxmet 14699 . . . 4  |-  ( C  e.  ( Met `  X
)  ->  C  e.  ( *Met `  X
) )
177, 16syl 14 . . 3  |-  ( ph  ->  C  e.  ( *Met `  X ) )
18 metxmet 14699 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
198, 18syl 14 . . 3  |-  ( ph  ->  D  e.  ( *Met `  X ) )
205, 6metss 14838 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  X
) )  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x ( ball `  D ) s ) 
C_  ( x (
ball `  C )
r ) ) )
2117, 19, 20syl2anc 411 . 2  |-  ( ph  ->  ( J  C_  K  <->  A. x  e.  X  A. r  e.  RR+  E. s  e.  RR+  ( x (
ball `  D )
s )  C_  (
x ( ball `  C
) r ) ) )
2215, 21mpbird 167 1  |-  ( ph  ->  J  C_  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925    x. cmul 7903    <_ cle 8081    / cdiv 8718   RR+crp 9747   *Metcxmet 14170   Metcmet 14171   ballcbl 14172   MetOpencmopn 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-bases 14387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator