| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > stoig | GIF version | ||
| Description: The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
| Ref | Expression |
|---|---|
| restuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| stoig | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | toptopon 14692 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | resttopon 14845 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) | |
| 4 | 2, 3 | sylanb 284 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
| 5 | eqid 2229 | . . 3 ⊢ {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} | |
| 6 | 5 | eltpsg 14714 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
| 7 | 4, 6 | syl 14 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), (𝐽 ↾t 𝐴)〉} ∈ TopSp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 {cpr 3667 〈cop 3669 ∪ cuni 3888 ‘cfv 5318 (class class class)co 6001 ndxcnx 13029 Basecbs 13032 TopSetcts 13116 ↾t crest 13272 Topctop 14671 TopOnctopon 14684 TopSpctps 14704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-ndx 13035 df-slot 13036 df-base 13038 df-tset 13129 df-rest 13274 df-topn 13275 df-topgen 13293 df-top 14672 df-topon 14685 df-topsp 14705 df-bases 14717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |