ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginv Unicode version

Theorem subginv 13632
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subginv.i  |-  I  =  ( invg `  G )
subginv.j  |-  J  =  ( invg `  H )
Assertion
Ref Expression
subginv  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5  |-  H  =  ( Gs  S )
21subggrp 13628 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
31subgbas 13629 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
43eleq2d 2277 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  <->  X  e.  ( Base `  H ) ) )
54biimpa 296 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
6 eqid 2207 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
7 eqid 2207 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2207 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
9 subginv.j . . . . 5  |-  J  =  ( invg `  H )
106, 7, 8, 9grprinv 13498 . . . 4  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( X ( +g  `  H ) ( J `
 X ) )  =  ( 0g `  H ) )
112, 5, 10syl2an2r 595 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  H
) ( J `  X ) )  =  ( 0g `  H
) )
121a1i 9 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
13 eqidd 2208 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
14 id 19 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
15 subgrcl 13630 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1612, 13, 14, 15ressplusgd 13076 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
1716adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1817oveqd 5984 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( X ( +g  `  H ) ( J `
 X ) ) )
19 eqid 2207 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 19subg0 13631 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2120adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2211, 18, 213eqtr4d 2250 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( 0g `  G
) )
2315adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  G  e.  Grp )
24 eqid 2207 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2524subgss 13625 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
2625sselda 3201 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
276, 9grpinvcl 13495 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( J `  X
)  e.  ( Base `  H ) )
2827ex 115 . . . . . . 7  |-  ( H  e.  Grp  ->  ( X  e.  ( Base `  H )  ->  ( J `  X )  e.  ( Base `  H
) ) )
292, 28syl 14 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  ( Base `  H
)  ->  ( J `  X )  e.  (
Base `  H )
) )
303eleq2d 2277 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( J `  X )  e.  S  <->  ( J `  X )  e.  (
Base `  H )
) )
3129, 4, 303imtr4d 203 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  ->  ( J `
 X )  e.  S ) )
3231imp 124 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  S )
3325sselda 3201 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( J `  X )  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
3432, 33syldan 282 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
35 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
36 subginv.i . . . 4  |-  I  =  ( invg `  G )
3724, 35, 19, 36grpinvid1 13499 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  ( Base `  G )  /\  ( J `  X )  e.  ( Base `  G
) )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3823, 26, 34, 37syl3anc 1250 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3922, 38mpbird 167 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448  SubGrpcsubg 13618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621
This theorem is referenced by:  subginvcl  13634  subgsub  13637  subgmulg  13639  mplnegfi  14582
  Copyright terms: Public domain W3C validator