| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subginv | Unicode version | ||
| Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0.h |
|
| subginv.i |
|
| subginv.j |
|
| Ref | Expression |
|---|---|
| subginv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subg0.h |
. . . . 5
| |
| 2 | 1 | subggrp 13513 |
. . . 4
|
| 3 | 1 | subgbas 13514 |
. . . . . 6
|
| 4 | 3 | eleq2d 2275 |
. . . . 5
|
| 5 | 4 | biimpa 296 |
. . . 4
|
| 6 | eqid 2205 |
. . . . 5
| |
| 7 | eqid 2205 |
. . . . 5
| |
| 8 | eqid 2205 |
. . . . 5
| |
| 9 | subginv.j |
. . . . 5
| |
| 10 | 6, 7, 8, 9 | grprinv 13383 |
. . . 4
|
| 11 | 2, 5, 10 | syl2an2r 595 |
. . 3
|
| 12 | 1 | a1i 9 |
. . . . . 6
|
| 13 | eqidd 2206 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | subgrcl 13515 |
. . . . . 6
| |
| 16 | 12, 13, 14, 15 | ressplusgd 12961 |
. . . . 5
|
| 17 | 16 | adantr 276 |
. . . 4
|
| 18 | 17 | oveqd 5961 |
. . 3
|
| 19 | eqid 2205 |
. . . . 5
| |
| 20 | 1, 19 | subg0 13516 |
. . . 4
|
| 21 | 20 | adantr 276 |
. . 3
|
| 22 | 11, 18, 21 | 3eqtr4d 2248 |
. 2
|
| 23 | 15 | adantr 276 |
. . 3
|
| 24 | eqid 2205 |
. . . . 5
| |
| 25 | 24 | subgss 13510 |
. . . 4
|
| 26 | 25 | sselda 3193 |
. . 3
|
| 27 | 6, 9 | grpinvcl 13380 |
. . . . . . . 8
|
| 28 | 27 | ex 115 |
. . . . . . 7
|
| 29 | 2, 28 | syl 14 |
. . . . . 6
|
| 30 | 3 | eleq2d 2275 |
. . . . . 6
|
| 31 | 29, 4, 30 | 3imtr4d 203 |
. . . . 5
|
| 32 | 31 | imp 124 |
. . . 4
|
| 33 | 25 | sselda 3193 |
. . . 4
|
| 34 | 32, 33 | syldan 282 |
. . 3
|
| 35 | eqid 2205 |
. . . 4
| |
| 36 | subginv.i |
. . . 4
| |
| 37 | 24, 35, 19, 36 | grpinvid1 13384 |
. . 3
|
| 38 | 23, 26, 34, 37 | syl3anc 1250 |
. 2
|
| 39 | 22, 38 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-subg 13506 |
| This theorem is referenced by: subginvcl 13519 subgsub 13522 subgmulg 13524 mplnegfi 14467 |
| Copyright terms: Public domain | W3C validator |