ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginv Unicode version

Theorem subginv 13072
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subginv.i  |-  I  =  ( invg `  G )
subginv.j  |-  J  =  ( invg `  H )
Assertion
Ref Expression
subginv  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5  |-  H  =  ( Gs  S )
21subggrp 13068 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
31subgbas 13069 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
43eleq2d 2257 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  <->  X  e.  ( Base `  H ) ) )
54biimpa 296 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
6 eqid 2187 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
7 eqid 2187 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2187 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
9 subginv.j . . . . 5  |-  J  =  ( invg `  H )
106, 7, 8, 9grprinv 12947 . . . 4  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( X ( +g  `  H ) ( J `
 X ) )  =  ( 0g `  H ) )
112, 5, 10syl2an2r 595 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  H
) ( J `  X ) )  =  ( 0g `  H
) )
121a1i 9 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
13 eqidd 2188 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
14 id 19 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
15 subgrcl 13070 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1612, 13, 14, 15ressplusgd 12601 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
1716adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1817oveqd 5905 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( X ( +g  `  H ) ( J `
 X ) ) )
19 eqid 2187 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 19subg0 13071 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2120adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2211, 18, 213eqtr4d 2230 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( 0g `  G
) )
2315adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  G  e.  Grp )
24 eqid 2187 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2524subgss 13065 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
2625sselda 3167 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
276, 9grpinvcl 12944 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( J `  X
)  e.  ( Base `  H ) )
2827ex 115 . . . . . . 7  |-  ( H  e.  Grp  ->  ( X  e.  ( Base `  H )  ->  ( J `  X )  e.  ( Base `  H
) ) )
292, 28syl 14 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  ( Base `  H
)  ->  ( J `  X )  e.  (
Base `  H )
) )
303eleq2d 2257 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( J `  X )  e.  S  <->  ( J `  X )  e.  (
Base `  H )
) )
3129, 4, 303imtr4d 203 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  ->  ( J `
 X )  e.  S ) )
3231imp 124 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  S )
3325sselda 3167 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( J `  X )  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
3432, 33syldan 282 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
35 eqid 2187 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
36 subginv.i . . . 4  |-  I  =  ( invg `  G )
3724, 35, 19, 36grpinvid1 12948 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  ( Base `  G )  /\  ( J `  X )  e.  ( Base `  G
) )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3823, 26, 34, 37syl3anc 1248 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3922, 38mpbird 167 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12475   ↾s cress 12476   +g cplusg 12550   0gc0g 12722   Grpcgrp 12898   invgcminusg 12899  SubGrpcsubg 13058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-minusg 12902  df-subg 13061
This theorem is referenced by:  subginvcl  13074  subgsub  13077  subgmulg  13079
  Copyright terms: Public domain W3C validator