ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginv Unicode version

Theorem subginv 13311
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subginv.i  |-  I  =  ( invg `  G )
subginv.j  |-  J  =  ( invg `  H )
Assertion
Ref Expression
subginv  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5  |-  H  =  ( Gs  S )
21subggrp 13307 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
31subgbas 13308 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
43eleq2d 2266 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  <->  X  e.  ( Base `  H ) ) )
54biimpa 296 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
6 eqid 2196 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
7 eqid 2196 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2196 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
9 subginv.j . . . . 5  |-  J  =  ( invg `  H )
106, 7, 8, 9grprinv 13183 . . . 4  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( X ( +g  `  H ) ( J `
 X ) )  =  ( 0g `  H ) )
112, 5, 10syl2an2r 595 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  H
) ( J `  X ) )  =  ( 0g `  H
) )
121a1i 9 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
13 eqidd 2197 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
14 id 19 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
15 subgrcl 13309 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1612, 13, 14, 15ressplusgd 12806 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
1716adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1817oveqd 5939 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( X ( +g  `  H ) ( J `
 X ) ) )
19 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 19subg0 13310 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2120adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2211, 18, 213eqtr4d 2239 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( 0g `  G
) )
2315adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  G  e.  Grp )
24 eqid 2196 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2524subgss 13304 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
2625sselda 3183 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
276, 9grpinvcl 13180 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( J `  X
)  e.  ( Base `  H ) )
2827ex 115 . . . . . . 7  |-  ( H  e.  Grp  ->  ( X  e.  ( Base `  H )  ->  ( J `  X )  e.  ( Base `  H
) ) )
292, 28syl 14 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  ( Base `  H
)  ->  ( J `  X )  e.  (
Base `  H )
) )
303eleq2d 2266 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( J `  X )  e.  S  <->  ( J `  X )  e.  (
Base `  H )
) )
3129, 4, 303imtr4d 203 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  ->  ( J `
 X )  e.  S ) )
3231imp 124 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  S )
3325sselda 3183 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( J `  X )  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
3432, 33syldan 282 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
35 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
36 subginv.i . . . 4  |-  I  =  ( invg `  G )
3724, 35, 19, 36grpinvid1 13184 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  ( Base `  G )  /\  ( J `  X )  e.  ( Base `  G
) )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3823, 26, 34, 37syl3anc 1249 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3922, 38mpbird 167 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300
This theorem is referenced by:  subginvcl  13313  subgsub  13316  subgmulg  13318
  Copyright terms: Public domain W3C validator