ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subginv Unicode version

Theorem subginv 13713
Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subginv.i  |-  I  =  ( invg `  G )
subginv.j  |-  J  =  ( invg `  H )
Assertion
Ref Expression
subginv  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )

Proof of Theorem subginv
StepHypRef Expression
1 subg0.h . . . . 5  |-  H  =  ( Gs  S )
21subggrp 13709 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
31subgbas 13710 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
43eleq2d 2299 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  <->  X  e.  ( Base `  H ) ) )
54biimpa 296 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  H
) )
6 eqid 2229 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
7 eqid 2229 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
8 eqid 2229 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
9 subginv.j . . . . 5  |-  J  =  ( invg `  H )
106, 7, 8, 9grprinv 13579 . . . 4  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( X ( +g  `  H ) ( J `
 X ) )  =  ( 0g `  H ) )
112, 5, 10syl2an2r 597 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  H
) ( J `  X ) )  =  ( 0g `  H
) )
121a1i 9 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
13 eqidd 2230 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
14 id 19 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
15 subgrcl 13711 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1612, 13, 14, 15ressplusgd 13157 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
1716adantr 276 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( +g  `  G )  =  ( +g  `  H
) )
1817oveqd 6017 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( X ( +g  `  H ) ( J `
 X ) ) )
19 eqid 2229 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
201, 19subg0 13712 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
2120adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( 0g `  G )  =  ( 0g `  H
) )
2211, 18, 213eqtr4d 2272 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( X ( +g  `  G
) ( J `  X ) )  =  ( 0g `  G
) )
2315adantr 276 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  G  e.  Grp )
24 eqid 2229 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
2524subgss 13706 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
2625sselda 3224 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  X  e.  ( Base `  G
) )
276, 9grpinvcl 13576 . . . . . . . 8  |-  ( ( H  e.  Grp  /\  X  e.  ( Base `  H ) )  -> 
( J `  X
)  e.  ( Base `  H ) )
2827ex 115 . . . . . . 7  |-  ( H  e.  Grp  ->  ( X  e.  ( Base `  H )  ->  ( J `  X )  e.  ( Base `  H
) ) )
292, 28syl 14 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  ( Base `  H
)  ->  ( J `  X )  e.  (
Base `  H )
) )
303eleq2d 2299 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( J `  X )  e.  S  <->  ( J `  X )  e.  (
Base `  H )
) )
3129, 4, 303imtr4d 203 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( X  e.  S  ->  ( J `
 X )  e.  S ) )
3231imp 124 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  S )
3325sselda 3224 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  ( J `  X )  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
3432, 33syldan 282 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  ( J `  X )  e.  ( Base `  G
) )
35 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
36 subginv.i . . . 4  |-  I  =  ( invg `  G )
3724, 35, 19, 36grpinvid1 13580 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  ( Base `  G )  /\  ( J `  X )  e.  ( Base `  G
) )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3823, 26, 34, 37syl3anc 1271 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
( I `  X
)  =  ( J `
 X )  <->  ( X
( +g  `  G ) ( J `  X
) )  =  ( 0g `  G ) ) )
3922, 38mpbird 167 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S )  ->  (
I `  X )  =  ( J `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528   invgcminusg 13529  SubGrpcsubg 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702
This theorem is referenced by:  subginvcl  13715  subgsub  13718  subgmulg  13720  mplnegfi  14663
  Copyright terms: Public domain W3C validator