ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgabl Unicode version

Theorem subgabl 13294
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypothesis
Ref Expression
subgabl.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subgabl  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Abel )

Proof of Theorem subgabl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4  |-  H  =  ( Gs  S )
21subgbas 13142 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
32adantl 277 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
41a1i 9 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  =  ( Gs  S ) )
5 eqid 2189 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
65a1i 9 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
7 simpr 110 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
8 simpl 109 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  G  e.  Abel )
94, 6, 7, 8ressplusgd 12651 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
101subggrp 13141 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
1110adantl 277 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Grp )
12 simp1l 1023 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  G  e.  Abel )
13 simp1r 1024 . . . . 5  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  S  e.  (SubGrp `  G ) )
14 eqid 2189 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1514subgss 13138 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1613, 15syl 14 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  S  C_  ( Base `  G ) )
17 simp2 1000 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  x  e.  S )
1816, 17sseldd 3171 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  x  e.  ( Base `  G ) )
19 simp3 1001 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  y  e.  S )
2016, 19sseldd 3171 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  y  e.  ( Base `  G ) )
2114, 5ablcom 13267 . . 3  |-  ( ( G  e.  Abel  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
2212, 18, 20, 21syl3anc 1249 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) )
233, 9, 11, 22isabld 13263 1  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160    C_ wss 3144   ` cfv 5238  (class class class)co 5900   Basecbs 12523   ↾s cress 12524   +g cplusg 12600   Grpcgrp 12968  SubGrpcsubg 13131   Abelcabl 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-grp 12971  df-subg 13134  df-cmn 13250  df-abl 13251
This theorem is referenced by:  issubrng2  13582  rnglidlrng  13839
  Copyright terms: Public domain W3C validator