ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgabl Unicode version

Theorem subgabl 13869
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypothesis
Ref Expression
subgabl.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
subgabl  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Abel )

Proof of Theorem subgabl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4  |-  H  =  ( Gs  S )
21subgbas 13715 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
32adantl 277 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  S  =  ( Base `  H )
)
41a1i 9 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  =  ( Gs  S ) )
5 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
65a1i 9 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
7 simpr 110 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  S  e.  (SubGrp `  G ) )
8 simpl 109 . . 3  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  G  e.  Abel )
94, 6, 7, 8ressplusgd 13162 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
101subggrp 13714 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
1110adantl 277 . 2  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Grp )
12 simp1l 1045 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  G  e.  Abel )
13 simp1r 1046 . . . . 5  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  S  e.  (SubGrp `  G ) )
14 eqid 2229 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
1514subgss 13711 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1613, 15syl 14 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  S  C_  ( Base `  G ) )
17 simp2 1022 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  x  e.  S )
1816, 17sseldd 3225 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  x  e.  ( Base `  G ) )
19 simp3 1023 . . . 4  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  y  e.  S )
2016, 19sseldd 3225 . . 3  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  y  e.  ( Base `  G ) )
2114, 5ablcom 13840 . . 3  |-  ( ( G  e.  Abel  /\  x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  ->  ( x
( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) )
2212, 18, 20, 21syl3anc 1271 . 2  |-  ( ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G ) )  /\  x  e.  S  /\  y  e.  S )  ->  ( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) )
233, 9, 11, 22isabld 13836 1  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )
)  ->  H  e.  Abel )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   Grpcgrp 13533  SubGrpcsubg 13704   Abelcabl 13822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-grp 13536  df-subg 13707  df-cmn 13823  df-abl 13824
This theorem is referenced by:  issubrng2  14174  rnglidlrng  14462
  Copyright terms: Public domain W3C validator