ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnq0 GIF version

Theorem mulcomnq0 7401
Description: Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
Assertion
Ref Expression
mulcomnq0 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))

Proof of Theorem mulcomnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7366 . 2 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5849 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
3 oveq2 5850 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴))
42, 3eqeq12d 2180 . 2 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) ↔ (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴)))
5 oveq2 5850 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
6 oveq1 5849 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) = (𝐵 ·Q0 𝐴))
75, 6eqeq12d 2180 . 2 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) ↔ (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)))
8 nnmcom 6457 . . . . 5 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
98ad2ant2r 501 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
10 pinn 7250 . . . . . 6 (𝑦N𝑦 ∈ ω)
11 pinn 7250 . . . . . 6 (𝑤N𝑤 ∈ ω)
12 nnmcom 6457 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1310, 11, 12syl2an 287 . . . . 5 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1413ad2ant2l 500 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
15 opeq12 3760 . . . . 5 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → ⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ = ⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩)
1615eceq1d 6537 . . . 4 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
179, 14, 16syl2anc 409 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
18 mulnnnq0 7391 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
19 mulnnnq0 7391 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑥 ∈ ω ∧ 𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2019ancoms 266 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2117, 18, 203eqtr4d 2208 . 2 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ))
221, 4, 7, 212ecoptocl 6589 1 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  cop 3579  ωcom 4567  (class class class)co 5842   ·o comu 6382  [cec 6499  Ncnpi 7213   ~Q0 ceq0 7227  Q0cnq0 7228   ·Q0 cmq0 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq0 7365  df-nq0 7366  df-mq0 7369
This theorem is referenced by:  distnq0r  7404
  Copyright terms: Public domain W3C validator