ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnq0 GIF version

Theorem mulcomnq0 7615
Description: Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
Assertion
Ref Expression
mulcomnq0 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))

Proof of Theorem mulcomnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7580 . 2 Q0 = ((ω × N) / ~Q0 )
2 oveq1 5981 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
3 oveq2 5982 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴))
42, 3eqeq12d 2224 . 2 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) ↔ (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴)))
5 oveq2 5982 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
6 oveq1 5981 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) = (𝐵 ·Q0 𝐴))
75, 6eqeq12d 2224 . 2 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) ↔ (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)))
8 nnmcom 6605 . . . . 5 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
98ad2ant2r 509 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
10 pinn 7464 . . . . . 6 (𝑦N𝑦 ∈ ω)
11 pinn 7464 . . . . . 6 (𝑤N𝑤 ∈ ω)
12 nnmcom 6605 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1310, 11, 12syl2an 289 . . . . 5 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1413ad2ant2l 508 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
15 opeq12 3838 . . . . 5 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → ⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ = ⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩)
1615eceq1d 6686 . . . 4 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
179, 14, 16syl2anc 411 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
18 mulnnnq0 7605 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
19 mulnnnq0 7605 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑥 ∈ ω ∧ 𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2019ancoms 268 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2117, 18, 203eqtr4d 2252 . 2 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ))
221, 4, 7, 212ecoptocl 6740 1 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  cop 3649  ωcom 4659  (class class class)co 5974   ·o comu 6530  [cec 6648  Ncnpi 7427   ~Q0 ceq0 7441  Q0cnq0 7442   ·Q0 cmq0 7445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-oadd 6536  df-omul 6537  df-er 6650  df-ec 6652  df-qs 6656  df-ni 7459  df-mi 7461  df-enq0 7579  df-nq0 7580  df-mq0 7583
This theorem is referenced by:  distnq0r  7618
  Copyright terms: Public domain W3C validator