ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcomnq0 GIF version

Theorem mulcomnq0 7655
Description: Multiplication of nonnegative fractions is commutative. (Contributed by Jim Kingdon, 27-Nov-2019.)
Assertion
Ref Expression
mulcomnq0 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))

Proof of Theorem mulcomnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7620 . 2 Q0 = ((ω × N) / ~Q0 )
2 oveq1 6014 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
3 oveq2 6015 . . 3 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴))
42, 3eqeq12d 2244 . 2 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) ↔ (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴)))
5 oveq2 6015 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 ·Q0 𝐵))
6 oveq1 6014 . . 3 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) = (𝐵 ·Q0 𝐴))
75, 6eqeq12d 2244 . 2 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 𝐴) ↔ (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴)))
8 nnmcom 6643 . . . . 5 ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
98ad2ant2r 509 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥))
10 pinn 7504 . . . . . 6 (𝑦N𝑦 ∈ ω)
11 pinn 7504 . . . . . 6 (𝑤N𝑤 ∈ ω)
12 nnmcom 6643 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1310, 11, 12syl2an 289 . . . . 5 ((𝑦N𝑤N) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
1413ad2ant2l 508 . . . 4 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦))
15 opeq12 3859 . . . . 5 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → ⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩ = ⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩)
1615eceq1d 6724 . . . 4 (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
179, 14, 16syl2anc 411 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
18 mulnnnq0 7645 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)⟩] ~Q0 )
19 mulnnnq0 7645 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑥 ∈ ω ∧ 𝑦N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2019ancoms 268 . . 3 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ) = [⟨(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)⟩] ~Q0 )
2117, 18, 203eqtr4d 2272 . 2 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 ·Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = ([⟨𝑧, 𝑤⟩] ~Q0 ·Q0 [⟨𝑥, 𝑦⟩] ~Q0 ))
221, 4, 7, 212ecoptocl 6778 1 ((𝐴Q0𝐵Q0) → (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  cop 3669  ωcom 4682  (class class class)co 6007   ·o comu 6566  [cec 6686  Ncnpi 7467   ~Q0 ceq0 7481  Q0cnq0 7482   ·Q0 cmq0 7485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-oadd 6572  df-omul 6573  df-er 6688  df-ec 6690  df-qs 6694  df-ni 7499  df-mi 7501  df-enq0 7619  df-nq0 7620  df-mq0 7623
This theorem is referenced by:  distnq0r  7658
  Copyright terms: Public domain W3C validator