| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-nq0 7492 | 
. 2
⊢
Q0 = ((ω × N)
/ ~Q0 ) | 
| 2 |   | oveq1 5929 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → ([〈𝑥, 𝑦〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
(𝐴
·Q0 [〈𝑧, 𝑤〉] ~Q0
)) | 
| 3 |   | oveq2 5930 | 
. . 3
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → ([〈𝑧, 𝑤〉] ~Q0
·Q0 [〈𝑥, 𝑦〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 ·Q0 𝐴)) | 
| 4 | 2, 3 | eqeq12d 2211 | 
. 2
⊢
([〈𝑥, 𝑦〉]
~Q0 = 𝐴 → (([〈𝑥, 𝑦〉] ~Q0
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 ·Q0 [〈𝑥, 𝑦〉] ~Q0 ) ↔
(𝐴
·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 ·Q0 𝐴))) | 
| 5 |   | oveq2 5930 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → (𝐴 ·Q0
[〈𝑧, 𝑤〉]
~Q0 ) = (𝐴 ·Q0 𝐵)) | 
| 6 |   | oveq1 5929 | 
. . 3
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → ([〈𝑧, 𝑤〉] ~Q0
·Q0 𝐴) = (𝐵 ·Q0 𝐴)) | 
| 7 | 5, 6 | eqeq12d 2211 | 
. 2
⊢
([〈𝑧, 𝑤〉]
~Q0 = 𝐵 → ((𝐴 ·Q0
[〈𝑧, 𝑤〉]
~Q0 ) = ([〈𝑧, 𝑤〉] ~Q0
·Q0 𝐴) ↔ (𝐴 ·Q0 𝐵) = (𝐵 ·Q0 𝐴))) | 
| 8 |   | nnmcom 6547 | 
. . . . 5
⊢ ((𝑥 ∈ ω ∧ 𝑧 ∈ ω) → (𝑥 ·o 𝑧) = (𝑧 ·o 𝑥)) | 
| 9 | 8 | ad2ant2r 509 | 
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (𝑥
·o 𝑧) =
(𝑧 ·o
𝑥)) | 
| 10 |   | pinn 7376 | 
. . . . . 6
⊢ (𝑦 ∈ N →
𝑦 ∈
ω) | 
| 11 |   | pinn 7376 | 
. . . . . 6
⊢ (𝑤 ∈ N →
𝑤 ∈
ω) | 
| 12 |   | nnmcom 6547 | 
. . . . . 6
⊢ ((𝑦 ∈ ω ∧ 𝑤 ∈ ω) → (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) | 
| 13 | 10, 11, 12 | syl2an 289 | 
. . . . 5
⊢ ((𝑦 ∈ N ∧
𝑤 ∈ N)
→ (𝑦
·o 𝑤) =
(𝑤 ·o
𝑦)) | 
| 14 | 13 | ad2ant2l 508 | 
. . . 4
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ (𝑦
·o 𝑤) =
(𝑤 ·o
𝑦)) | 
| 15 |   | opeq12 3810 | 
. . . . 5
⊢ (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → 〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉 = 〈(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)〉) | 
| 16 | 15 | eceq1d 6628 | 
. . . 4
⊢ (((𝑥 ·o 𝑧) = (𝑧 ·o 𝑥) ∧ (𝑦 ·o 𝑤) = (𝑤 ·o 𝑦)) → [〈(𝑥 ·o 𝑧), (𝑦 ·o 𝑤)〉] ~Q0 =
[〈(𝑧
·o 𝑥),
(𝑤 ·o
𝑦)〉]
~Q0 ) | 
| 17 | 9, 14, 16 | syl2anc 411 | 
. . 3
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ [〈(𝑥
·o 𝑧),
(𝑦 ·o
𝑤)〉]
~Q0 = [〈(𝑧 ·o 𝑥), (𝑤 ·o 𝑦)〉] ~Q0
) | 
| 18 |   | mulnnnq0 7517 | 
. . 3
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
[〈(𝑥
·o 𝑧),
(𝑦 ·o
𝑤)〉]
~Q0 ) | 
| 19 |   | mulnnnq0 7517 | 
. . . 4
⊢ (((𝑧 ∈ ω ∧ 𝑤 ∈ N) ∧
(𝑥 ∈ ω ∧
𝑦 ∈ N))
→ ([〈𝑧, 𝑤〉]
~Q0 ·Q0 [〈𝑥, 𝑦〉] ~Q0 ) =
[〈(𝑧
·o 𝑥),
(𝑤 ·o
𝑦)〉]
~Q0 ) | 
| 20 | 19 | ancoms 268 | 
. . 3
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑧, 𝑤〉]
~Q0 ·Q0 [〈𝑥, 𝑦〉] ~Q0 ) =
[〈(𝑧
·o 𝑥),
(𝑤 ·o
𝑦)〉]
~Q0 ) | 
| 21 | 17, 18, 20 | 3eqtr4d 2239 | 
. 2
⊢ (((𝑥 ∈ ω ∧ 𝑦 ∈ N) ∧
(𝑧 ∈ ω ∧
𝑤 ∈ N))
→ ([〈𝑥, 𝑦〉]
~Q0 ·Q0 [〈𝑧, 𝑤〉] ~Q0 ) =
([〈𝑧, 𝑤〉]
~Q0 ·Q0 [〈𝑥, 𝑦〉] ~Q0
)) | 
| 22 | 1, 4, 7, 21 | 2ecoptocl 6682 | 
1
⊢ ((𝐴 ∈
Q0 ∧ 𝐵 ∈ Q0) →
(𝐴
·Q0 𝐵) = (𝐵 ·Q0 𝐴)) |