| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addclsr | GIF version | ||
| Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) |
| Ref | Expression |
|---|---|
| addclsr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr 7797 | . . 3 ⊢ R = ((P × P) / ~R ) | |
| 2 | oveq1 5930 | . . . 4 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R [〈𝑧, 𝑤〉] ~R )) | |
| 3 | 2 | eleq1d 2265 | . . 3 ⊢ ([〈𝑥, 𝑦〉] ~R = 𝐴 → (([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ))) |
| 4 | oveq2 5931 | . . . 4 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → (𝐴 +R [〈𝑧, 𝑤〉] ~R ) = (𝐴 +R 𝐵)) | |
| 5 | 4 | eleq1d 2265 | . . 3 ⊢ ([〈𝑧, 𝑤〉] ~R = 𝐵 → ((𝐴 +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))) |
| 6 | addsrpr 7815 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) = [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ) | |
| 7 | addclpr 7607 | . . . . . . 7 ⊢ ((𝑥 ∈ P ∧ 𝑧 ∈ P) → (𝑥 +P 𝑧) ∈ P) | |
| 8 | addclpr 7607 | . . . . . . 7 ⊢ ((𝑦 ∈ P ∧ 𝑤 ∈ P) → (𝑦 +P 𝑤) ∈ P) | |
| 9 | 7, 8 | anim12i 338 | . . . . . 6 ⊢ (((𝑥 ∈ P ∧ 𝑧 ∈ P) ∧ (𝑦 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 10 | 9 | an4s 588 | . . . . 5 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P)) |
| 11 | opelxpi 4696 | . . . . 5 ⊢ (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → 〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P)) | |
| 12 | enrex 7807 | . . . . . 6 ⊢ ~R ∈ V | |
| 13 | 12 | ecelqsi 6650 | . . . . 5 ⊢ (〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉 ∈ (P × P) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 14 | 10, 11, 13 | 3syl 17 | . . . 4 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → [〈(𝑥 +P 𝑧), (𝑦 +P 𝑤)〉] ~R ∈ ((P × P) / ~R )) |
| 15 | 6, 14 | eqeltrd 2273 | . . 3 ⊢ (((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ (𝑧 ∈ P ∧ 𝑤 ∈ P)) → ([〈𝑥, 𝑦〉] ~R +R [〈𝑧, 𝑤〉] ~R ) ∈ ((P × P) / ~R )) |
| 16 | 1, 3, 5, 15 | 2ecoptocl 6684 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R )) |
| 17 | 16, 1 | eleqtrrdi 2290 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 〈cop 3626 × cxp 4662 (class class class)co 5923 [cec 6592 / cqs 6593 Pcnp 7361 +P cpp 7363 ~R cer 7366 Rcnr 7367 +R cplr 7371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-1o 6476 df-2o 6477 df-oadd 6480 df-omul 6481 df-er 6594 df-ec 6596 df-qs 6600 df-ni 7374 df-pli 7375 df-mi 7376 df-lti 7377 df-plpq 7414 df-mpq 7415 df-enq 7417 df-nqqs 7418 df-plqqs 7419 df-mqqs 7420 df-1nqqs 7421 df-rq 7422 df-ltnqqs 7423 df-enq0 7494 df-nq0 7495 df-0nq0 7496 df-plq0 7497 df-mq0 7498 df-inp 7536 df-iplp 7538 df-enr 7796 df-nr 7797 df-plr 7798 |
| This theorem is referenced by: ltm1sr 7847 caucvgsrlemoffval 7866 caucvgsrlemofff 7867 caucvgsrlemoffcau 7868 caucvgsrlemoffres 7870 caucvgsr 7872 map2psrprg 7875 suplocsrlemb 7876 suplocsrlem 7878 addcnsr 7904 mulcnsr 7905 addcnsrec 7912 mulcnsrec 7913 axaddcl 7934 axaddrcl 7935 axmulcl 7936 axaddass 7942 axmulass 7943 axdistr 7944 |
| Copyright terms: Public domain | W3C validator |