ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addclsr GIF version

Theorem addclsr 7815
Description: Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
addclsr ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)

Proof of Theorem addclsr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7789 . . 3 R = ((P × P) / ~R )
2 oveq1 5926 . . . 4 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ))
32eleq1d 2262 . . 3 ([⟨𝑥, 𝑦⟩] ~R = 𝐴 → (([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R )))
4 oveq2 5927 . . . 4 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → (𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) = (𝐴 +R 𝐵))
54eleq1d 2262 . . 3 ([⟨𝑧, 𝑤⟩] ~R = 𝐵 → ((𝐴 +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ) ↔ (𝐴 +R 𝐵) ∈ ((P × P) / ~R )))
6 addsrpr 7807 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) = [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R )
7 addclpr 7599 . . . . . . 7 ((𝑥P𝑧P) → (𝑥 +P 𝑧) ∈ P)
8 addclpr 7599 . . . . . . 7 ((𝑦P𝑤P) → (𝑦 +P 𝑤) ∈ P)
97, 8anim12i 338 . . . . . 6 (((𝑥P𝑧P) ∧ (𝑦P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
109an4s 588 . . . . 5 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P))
11 opelxpi 4692 . . . . 5 (((𝑥 +P 𝑧) ∈ P ∧ (𝑦 +P 𝑤) ∈ P) → ⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P))
12 enrex 7799 . . . . . 6 ~R ∈ V
1312ecelqsi 6645 . . . . 5 (⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩ ∈ (P × P) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
1410, 11, 133syl 17 . . . 4 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → [⟨(𝑥 +P 𝑧), (𝑦 +P 𝑤)⟩] ~R ∈ ((P × P) / ~R ))
156, 14eqeltrd 2270 . . 3 (((𝑥P𝑦P) ∧ (𝑧P𝑤P)) → ([⟨𝑥, 𝑦⟩] ~R +R [⟨𝑧, 𝑤⟩] ~R ) ∈ ((P × P) / ~R ))
161, 3, 5, 152ecoptocl 6679 . 2 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ ((P × P) / ~R ))
1716, 1eleqtrrdi 2287 1 ((𝐴R𝐵R) → (𝐴 +R 𝐵) ∈ R)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cop 3622   × cxp 4658  (class class class)co 5919  [cec 6587   / cqs 6588  Pcnp 7353   +P cpp 7355   ~R cer 7358  Rcnr 7359   +R cplr 7363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iplp 7530  df-enr 7788  df-nr 7789  df-plr 7790
This theorem is referenced by:  ltm1sr  7839  caucvgsrlemoffval  7858  caucvgsrlemofff  7859  caucvgsrlemoffcau  7860  caucvgsrlemoffres  7862  caucvgsr  7864  map2psrprg  7867  suplocsrlemb  7868  suplocsrlem  7870  addcnsr  7896  mulcnsr  7897  addcnsrec  7904  mulcnsrec  7905  axaddcl  7926  axaddrcl  7927  axmulcl  7928  axaddass  7934  axmulass  7935  axdistr  7936
  Copyright terms: Public domain W3C validator