![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ndinr | GIF version |
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
2ndinr | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 7107 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
3 | opeq2 3805 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
4 | 3 | adantl 277 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
5 | elex 2771 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 1on 6476 | . . . . 5 ⊢ 1o ∈ On | |
7 | opexg 4257 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 424 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5638 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
10 | 9 | fveq2d 5558 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘〈1o, 𝑋〉)) |
11 | op2ndg 6204 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈1o, 𝑋〉) = 𝑋) | |
12 | 6, 11 | mpan 424 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈1o, 𝑋〉) = 𝑋) |
13 | 10, 12 | eqtrd 2226 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ↦ cmpt 4090 Oncon0 4394 ‘cfv 5254 2nd c2nd 6192 1oc1o 6462 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-2nd 6194 df-1o 6469 df-inr 7107 |
This theorem is referenced by: updjudhcoinrg 7140 |
Copyright terms: Public domain | W3C validator |