Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndinr | GIF version |
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
2ndinr | ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inr 7013 | . . . . 5 ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉)) |
3 | opeq2 3759 | . . . . 5 ⊢ (𝑥 = 𝑋 → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) | |
4 | 3 | adantl 275 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑥 = 𝑋) → 〈1o, 𝑥〉 = 〈1o, 𝑋〉) |
5 | elex 2737 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
6 | 1on 6391 | . . . . 5 ⊢ 1o ∈ On | |
7 | opexg 4206 | . . . . 5 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → 〈1o, 𝑋〉 ∈ V) | |
8 | 6, 7 | mpan 421 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈1o, 𝑋〉 ∈ V) |
9 | 2, 4, 5, 8 | fvmptd 5567 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inr‘𝑋) = 〈1o, 𝑋〉) |
10 | 9 | fveq2d 5490 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘〈1o, 𝑋〉)) |
11 | op2ndg 6119 | . . 3 ⊢ ((1o ∈ On ∧ 𝑋 ∈ 𝑉) → (2nd ‘〈1o, 𝑋〉) = 𝑋) | |
12 | 6, 11 | mpan 421 | . 2 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘〈1o, 𝑋〉) = 𝑋) |
13 | 10, 12 | eqtrd 2198 | 1 ⊢ (𝑋 ∈ 𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 〈cop 3579 ↦ cmpt 4043 Oncon0 4341 ‘cfv 5188 2nd c2nd 6107 1oc1o 6377 inrcinr 7011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-2nd 6109 df-1o 6384 df-inr 7013 |
This theorem is referenced by: updjudhcoinrg 7046 |
Copyright terms: Public domain | W3C validator |