ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinr GIF version

Theorem 2ndinr 7138
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinr (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)

Proof of Theorem 2ndinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7109 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21a1i 9 . . . 4 (𝑋𝑉 → inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩))
3 opeq2 3806 . . . . 5 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
43adantl 277 . . . 4 ((𝑋𝑉𝑥 = 𝑋) → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
5 elex 2771 . . . 4 (𝑋𝑉𝑋 ∈ V)
6 1on 6478 . . . . 5 1o ∈ On
7 opexg 4258 . . . . 5 ((1o ∈ On ∧ 𝑋𝑉) → ⟨1o, 𝑋⟩ ∈ V)
86, 7mpan 424 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
92, 4, 5, 8fvmptd 5639 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
109fveq2d 5559 . 2 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘⟨1o, 𝑋⟩))
11 op2ndg 6206 . . 3 ((1o ∈ On ∧ 𝑋𝑉) → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
126, 11mpan 424 . 2 (𝑋𝑉 → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
1310, 12eqtrd 2226 1 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  Vcvv 2760  cop 3622  cmpt 4091  Oncon0 4395  cfv 5255  2nd c2nd 6194  1oc1o 6464  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fv 5263  df-2nd 6196  df-1o 6471  df-inr 7109
This theorem is referenced by:  updjudhcoinrg  7142
  Copyright terms: Public domain W3C validator