ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndinr GIF version

Theorem 2ndinr 7089
Description: The second component of the value of a right injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinr (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)

Proof of Theorem 2ndinr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inr 7060 . . . . 5 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
21a1i 9 . . . 4 (𝑋𝑉 → inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩))
3 opeq2 3791 . . . . 5 (𝑥 = 𝑋 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
43adantl 277 . . . 4 ((𝑋𝑉𝑥 = 𝑋) → ⟨1o, 𝑥⟩ = ⟨1o, 𝑋⟩)
5 elex 2760 . . . 4 (𝑋𝑉𝑋 ∈ V)
6 1on 6437 . . . . 5 1o ∈ On
7 opexg 4240 . . . . 5 ((1o ∈ On ∧ 𝑋𝑉) → ⟨1o, 𝑋⟩ ∈ V)
86, 7mpan 424 . . . 4 (𝑋𝑉 → ⟨1o, 𝑋⟩ ∈ V)
92, 4, 5, 8fvmptd 5610 . . 3 (𝑋𝑉 → (inr‘𝑋) = ⟨1o, 𝑋⟩)
109fveq2d 5531 . 2 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = (2nd ‘⟨1o, 𝑋⟩))
11 op2ndg 6165 . . 3 ((1o ∈ On ∧ 𝑋𝑉) → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
126, 11mpan 424 . 2 (𝑋𝑉 → (2nd ‘⟨1o, 𝑋⟩) = 𝑋)
1310, 12eqtrd 2220 1 (𝑋𝑉 → (2nd ‘(inr‘𝑋)) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  Vcvv 2749  cop 3607  cmpt 4076  Oncon0 4375  cfv 5228  2nd c2nd 6153  1oc1o 6423  inrcinr 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fv 5236  df-2nd 6155  df-1o 6430  df-inr 7060
This theorem is referenced by:  updjudhcoinrg  7093
  Copyright terms: Public domain W3C validator