| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7991 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 8047 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7899 · cmul 7903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-mulcom 7999 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: neg1mulneg1e1 9222 addltmul 9247 1exp 10679 expge1 10687 mulexp 10689 mulexpzap 10690 expaddzap 10694 m1expeven 10697 i4 10753 facp1 10841 binom 11668 prodf1 11726 prodfrecap 11730 fprodmul 11775 fprodrec 11813 fprodge1 11823 rpmul 12293 dvexp 15055 dvef 15071 lgslem3 15351 lgsval2lem 15359 lgsneg 15373 lgsdilem 15376 lgsdir 15384 lgsdi 15386 lgsquad2lem1 15430 lgsquad2lem2 15431 |
| Copyright terms: Public domain | W3C validator |