ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1t1e1 GIF version

Theorem 1t1e1 8629
Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
1t1e1 (1 · 1) = 1

Proof of Theorem 1t1e1
StepHypRef Expression
1 ax-1cn 7499 . 2 1 ∈ ℂ
21mulid1i 7551 1 (1 · 1) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1290  (class class class)co 5666  1c1 7412   · cmul 7416
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-resscn 7498  ax-1cn 7499  ax-icn 7501  ax-addcl 7502  ax-mulcl 7504  ax-mulcom 7507  ax-mulass 7509  ax-distr 7510  ax-1rid 7513  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669
This theorem is referenced by:  neg1mulneg1e1  8689  addltmul  8713  1exp  10045  expge1  10053  mulexp  10055  mulexpzap  10056  expaddzap  10060  m1expeven  10063  i4  10118  facp1  10199  binom  10939  rpmul  11419
  Copyright terms: Public domain W3C validator