| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8088 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 8144 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 1c1 7996 · cmul 8000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-mulcom 8096 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: neg1mulneg1e1 9319 addltmul 9344 1exp 10785 expge1 10793 mulexp 10795 mulexpzap 10796 expaddzap 10800 m1expeven 10803 i4 10859 facp1 10947 binom 11990 prodf1 12048 prodfrecap 12052 fprodmul 12097 fprodrec 12135 fprodge1 12145 rpmul 12615 dvexp 15379 dvef 15395 lgslem3 15675 lgsval2lem 15683 lgsneg 15697 lgsdilem 15700 lgsdir 15708 lgsdi 15710 lgsquad2lem1 15754 lgsquad2lem2 15755 |
| Copyright terms: Public domain | W3C validator |