| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 7972 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 8028 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5922 1c1 7880 · cmul 7884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-mulcom 7980 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: neg1mulneg1e1 9203 addltmul 9228 1exp 10660 expge1 10668 mulexp 10670 mulexpzap 10671 expaddzap 10675 m1expeven 10678 i4 10734 facp1 10822 binom 11649 prodf1 11707 prodfrecap 11711 fprodmul 11756 fprodrec 11794 fprodge1 11804 rpmul 12266 dvexp 14947 dvef 14963 lgslem3 15243 lgsval2lem 15251 lgsneg 15265 lgsdilem 15268 lgsdir 15276 lgsdi 15278 lgsquad2lem1 15322 lgsquad2lem2 15323 |
| Copyright terms: Public domain | W3C validator |