| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8018 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 8074 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 1c1 7926 · cmul 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: neg1mulneg1e1 9249 addltmul 9274 1exp 10713 expge1 10721 mulexp 10723 mulexpzap 10724 expaddzap 10728 m1expeven 10731 i4 10787 facp1 10875 binom 11795 prodf1 11853 prodfrecap 11857 fprodmul 11902 fprodrec 11940 fprodge1 11950 rpmul 12420 dvexp 15183 dvef 15199 lgslem3 15479 lgsval2lem 15487 lgsneg 15501 lgsdilem 15504 lgsdir 15512 lgsdi 15514 lgsquad2lem1 15558 lgsquad2lem2 15559 |
| Copyright terms: Public domain | W3C validator |