| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1t1e1 | GIF version | ||
| Description: 1 times 1 equals 1. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 1t1e1 | ⊢ (1 · 1) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 8053 | . 2 ⊢ 1 ∈ ℂ | |
| 2 | 1 | mulridi 8109 | 1 ⊢ (1 · 1) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5967 1c1 7961 · cmul 7965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-mulcl 8058 ax-mulcom 8061 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 |
| This theorem is referenced by: neg1mulneg1e1 9284 addltmul 9309 1exp 10750 expge1 10758 mulexp 10760 mulexpzap 10761 expaddzap 10765 m1expeven 10768 i4 10824 facp1 10912 binom 11910 prodf1 11968 prodfrecap 11972 fprodmul 12017 fprodrec 12055 fprodge1 12065 rpmul 12535 dvexp 15298 dvef 15314 lgslem3 15594 lgsval2lem 15602 lgsneg 15616 lgsdilem 15619 lgsdir 15627 lgsdi 15629 lgsquad2lem1 15673 lgsquad2lem2 15674 |
| Copyright terms: Public domain | W3C validator |