Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnrelemcalc GIF version

Theorem qbtwnrelemcalc 10133
 Description: Lemma for qbtwnre 10134. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.)
Hypotheses
Ref Expression
qbtwnrelemcalc.m (𝜑𝑀 ∈ ℤ)
qbtwnrelemcalc.n (𝜑𝑁 ∈ ℕ)
qbtwnrelemcalc.a (𝜑𝐴 ∈ ℝ)
qbtwnrelemcalc.b (𝜑𝐵 ∈ ℝ)
qbtwnrelemcalc.lt (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
qbtwnrelemcalc.1n (𝜑 → (1 / 𝑁) < (𝐵𝐴))
Assertion
Ref Expression
qbtwnrelemcalc (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)

Proof of Theorem qbtwnrelemcalc
StepHypRef Expression
1 2re 8882 . . . . 5 2 ∈ ℝ
21a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
3 qbtwnrelemcalc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 qbtwnrelemcalc.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 8825 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
62, 5remulcld 7887 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
73, 6remulcld 7887 . . . . 5 (𝜑 → (𝐵 · (2 · 𝑁)) ∈ ℝ)
8 qbtwnrelemcalc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
98, 6remulcld 7887 . . . . 5 (𝜑 → (𝐴 · (2 · 𝑁)) ∈ ℝ)
107, 9resubcld 8235 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) ∈ ℝ)
11 qbtwnrelemcalc.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1211zred 9265 . . . . 5 (𝜑𝑀 ∈ ℝ)
137, 12resubcld 8235 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − 𝑀) ∈ ℝ)
14 2t1e2 8965 . . . . . . . . 9 (2 · 1) = 2
1514oveq1i 5824 . . . . . . . 8 ((2 · 1) / (2 · 𝑁)) = (2 / (2 · 𝑁))
16 1cnd 7873 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
175recnd 7885 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
182recnd 7885 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
194nnap0d 8858 . . . . . . . . 9 (𝜑𝑁 # 0)
20 2ap0 8905 . . . . . . . . . 10 2 # 0
2120a1i 9 . . . . . . . . 9 (𝜑 → 2 # 0)
2216, 17, 18, 19, 21divcanap5d 8669 . . . . . . . 8 (𝜑 → ((2 · 1) / (2 · 𝑁)) = (1 / 𝑁))
2315, 22syl5eqr 2201 . . . . . . 7 (𝜑 → (2 / (2 · 𝑁)) = (1 / 𝑁))
24 qbtwnrelemcalc.1n . . . . . . 7 (𝜑 → (1 / 𝑁) < (𝐵𝐴))
2523, 24eqbrtrd 3982 . . . . . 6 (𝜑 → (2 / (2 · 𝑁)) < (𝐵𝐴))
263, 8resubcld 8235 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
27 2rp 9543 . . . . . . . . 9 2 ∈ ℝ+
2827a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
294nnrpd 9579 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
3028, 29rpmulcld 9598 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
312, 26, 30ltdivmul2d 9634 . . . . . 6 (𝜑 → ((2 / (2 · 𝑁)) < (𝐵𝐴) ↔ 2 < ((𝐵𝐴) · (2 · 𝑁))))
3225, 31mpbid 146 . . . . 5 (𝜑 → 2 < ((𝐵𝐴) · (2 · 𝑁)))
333recnd 7885 . . . . . 6 (𝜑𝐵 ∈ ℂ)
348recnd 7885 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3518, 17mulcld 7877 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
3633, 34, 35subdird 8269 . . . . 5 (𝜑 → ((𝐵𝐴) · (2 · 𝑁)) = ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
3732, 36breqtrd 3986 . . . 4 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
38 qbtwnrelemcalc.lt . . . . 5 (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
3912, 9, 7, 38ltsub2dd 8412 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) < ((𝐵 · (2 · 𝑁)) − 𝑀))
402, 10, 13, 37, 39lttrd 7980 . . 3 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − 𝑀))
4112, 2, 7ltaddsub2d 8400 . . 3 (𝜑 → ((𝑀 + 2) < (𝐵 · (2 · 𝑁)) ↔ 2 < ((𝐵 · (2 · 𝑁)) − 𝑀)))
4240, 41mpbird 166 . 2 (𝜑 → (𝑀 + 2) < (𝐵 · (2 · 𝑁)))
4312, 2readdcld 7886 . . 3 (𝜑 → (𝑀 + 2) ∈ ℝ)
4443, 3, 30ltdivmul2d 9634 . 2 (𝜑 → (((𝑀 + 2) / (2 · 𝑁)) < 𝐵 ↔ (𝑀 + 2) < (𝐵 · (2 · 𝑁))))
4542, 44mpbird 166 1 (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 2125   class class class wbr 3961  (class class class)co 5814  ℝcr 7710  0cc0 7711  1c1 7712   + caddc 7714   · cmul 7716   < clt 7891   − cmin 8025   # cap 8435   / cdiv 8524  ℕcn 8812  2c2 8863  ℤcz 9146  ℝ+crp 9538 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-z 9147  df-rp 9539 This theorem is referenced by:  qbtwnre  10134
 Copyright terms: Public domain W3C validator