ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnrelemcalc GIF version

Theorem qbtwnrelemcalc 9556
Description: Lemma for qbtwnre 9557. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.)
Hypotheses
Ref Expression
qbtwnrelemcalc.m (𝜑𝑀 ∈ ℤ)
qbtwnrelemcalc.n (𝜑𝑁 ∈ ℕ)
qbtwnrelemcalc.a (𝜑𝐴 ∈ ℝ)
qbtwnrelemcalc.b (𝜑𝐵 ∈ ℝ)
qbtwnrelemcalc.lt (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
qbtwnrelemcalc.1n (𝜑 → (1 / 𝑁) < (𝐵𝐴))
Assertion
Ref Expression
qbtwnrelemcalc (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)

Proof of Theorem qbtwnrelemcalc
StepHypRef Expression
1 2re 8386 . . . . 5 2 ∈ ℝ
21a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
3 qbtwnrelemcalc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 qbtwnrelemcalc.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 8329 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
62, 5remulcld 7421 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
73, 6remulcld 7421 . . . . 5 (𝜑 → (𝐵 · (2 · 𝑁)) ∈ ℝ)
8 qbtwnrelemcalc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
98, 6remulcld 7421 . . . . 5 (𝜑 → (𝐴 · (2 · 𝑁)) ∈ ℝ)
107, 9resubcld 7762 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) ∈ ℝ)
11 qbtwnrelemcalc.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1211zred 8764 . . . . 5 (𝜑𝑀 ∈ ℝ)
137, 12resubcld 7762 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − 𝑀) ∈ ℝ)
14 2t1e2 8462 . . . . . . . . 9 (2 · 1) = 2
1514oveq1i 5601 . . . . . . . 8 ((2 · 1) / (2 · 𝑁)) = (2 / (2 · 𝑁))
16 1cnd 7407 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
175recnd 7419 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
182recnd 7419 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
194nnap0d 8361 . . . . . . . . 9 (𝜑𝑁 # 0)
20 2ap0 8409 . . . . . . . . . 10 2 # 0
2120a1i 9 . . . . . . . . 9 (𝜑 → 2 # 0)
2216, 17, 18, 19, 21divcanap5d 8180 . . . . . . . 8 (𝜑 → ((2 · 1) / (2 · 𝑁)) = (1 / 𝑁))
2315, 22syl5eqr 2129 . . . . . . 7 (𝜑 → (2 / (2 · 𝑁)) = (1 / 𝑁))
24 qbtwnrelemcalc.1n . . . . . . 7 (𝜑 → (1 / 𝑁) < (𝐵𝐴))
2523, 24eqbrtrd 3831 . . . . . 6 (𝜑 → (2 / (2 · 𝑁)) < (𝐵𝐴))
263, 8resubcld 7762 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
27 2rp 9034 . . . . . . . . 9 2 ∈ ℝ+
2827a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
294nnrpd 9067 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
3028, 29rpmulcld 9085 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
312, 26, 30ltdivmul2d 9121 . . . . . 6 (𝜑 → ((2 / (2 · 𝑁)) < (𝐵𝐴) ↔ 2 < ((𝐵𝐴) · (2 · 𝑁))))
3225, 31mpbid 145 . . . . 5 (𝜑 → 2 < ((𝐵𝐴) · (2 · 𝑁)))
333recnd 7419 . . . . . 6 (𝜑𝐵 ∈ ℂ)
348recnd 7419 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3518, 17mulcld 7411 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
3633, 34, 35subdird 7796 . . . . 5 (𝜑 → ((𝐵𝐴) · (2 · 𝑁)) = ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
3732, 36breqtrd 3835 . . . 4 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
38 qbtwnrelemcalc.lt . . . . 5 (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
3912, 9, 7, 38ltsub2dd 7935 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) < ((𝐵 · (2 · 𝑁)) − 𝑀))
402, 10, 13, 37, 39lttrd 7512 . . 3 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − 𝑀))
4112, 2, 7ltaddsub2d 7923 . . 3 (𝜑 → ((𝑀 + 2) < (𝐵 · (2 · 𝑁)) ↔ 2 < ((𝐵 · (2 · 𝑁)) − 𝑀)))
4240, 41mpbird 165 . 2 (𝜑 → (𝑀 + 2) < (𝐵 · (2 · 𝑁)))
4312, 2readdcld 7420 . . 3 (𝜑 → (𝑀 + 2) ∈ ℝ)
4443, 3, 30ltdivmul2d 9121 . 2 (𝜑 → (((𝑀 + 2) / (2 · 𝑁)) < 𝐵 ↔ (𝑀 + 2) < (𝐵 · (2 · 𝑁))))
4542, 44mpbird 165 1 (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1434   class class class wbr 3811  (class class class)co 5591  cr 7252  0cc0 7253  1c1 7254   + caddc 7256   · cmul 7258   < clt 7425  cmin 7556   # cap 7958   / cdiv 8037  cn 8316  2c2 8366  cz 8646  +crp 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-iota 4934  df-fun 4971  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-2 8375  df-z 8647  df-rp 9030
This theorem is referenced by:  qbtwnre  9557
  Copyright terms: Public domain W3C validator