ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnrelemcalc GIF version

Theorem qbtwnrelemcalc 9667
Description: Lemma for qbtwnre 9668. Calculations involved in showing the constructed rational number is less than 𝐵. (Contributed by Jim Kingdon, 14-Oct-2021.)
Hypotheses
Ref Expression
qbtwnrelemcalc.m (𝜑𝑀 ∈ ℤ)
qbtwnrelemcalc.n (𝜑𝑁 ∈ ℕ)
qbtwnrelemcalc.a (𝜑𝐴 ∈ ℝ)
qbtwnrelemcalc.b (𝜑𝐵 ∈ ℝ)
qbtwnrelemcalc.lt (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
qbtwnrelemcalc.1n (𝜑 → (1 / 𝑁) < (𝐵𝐴))
Assertion
Ref Expression
qbtwnrelemcalc (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)

Proof of Theorem qbtwnrelemcalc
StepHypRef Expression
1 2re 8492 . . . . 5 2 ∈ ℝ
21a1i 9 . . . 4 (𝜑 → 2 ∈ ℝ)
3 qbtwnrelemcalc.b . . . . . 6 (𝜑𝐵 ∈ ℝ)
4 qbtwnrelemcalc.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54nnred 8435 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
62, 5remulcld 7518 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
73, 6remulcld 7518 . . . . 5 (𝜑 → (𝐵 · (2 · 𝑁)) ∈ ℝ)
8 qbtwnrelemcalc.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
98, 6remulcld 7518 . . . . 5 (𝜑 → (𝐴 · (2 · 𝑁)) ∈ ℝ)
107, 9resubcld 7859 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) ∈ ℝ)
11 qbtwnrelemcalc.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1211zred 8868 . . . . 5 (𝜑𝑀 ∈ ℝ)
137, 12resubcld 7859 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − 𝑀) ∈ ℝ)
14 2t1e2 8569 . . . . . . . . 9 (2 · 1) = 2
1514oveq1i 5662 . . . . . . . 8 ((2 · 1) / (2 · 𝑁)) = (2 / (2 · 𝑁))
16 1cnd 7504 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
175recnd 7516 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
182recnd 7516 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
194nnap0d 8468 . . . . . . . . 9 (𝜑𝑁 # 0)
20 2ap0 8515 . . . . . . . . . 10 2 # 0
2120a1i 9 . . . . . . . . 9 (𝜑 → 2 # 0)
2216, 17, 18, 19, 21divcanap5d 8284 . . . . . . . 8 (𝜑 → ((2 · 1) / (2 · 𝑁)) = (1 / 𝑁))
2315, 22syl5eqr 2134 . . . . . . 7 (𝜑 → (2 / (2 · 𝑁)) = (1 / 𝑁))
24 qbtwnrelemcalc.1n . . . . . . 7 (𝜑 → (1 / 𝑁) < (𝐵𝐴))
2523, 24eqbrtrd 3865 . . . . . 6 (𝜑 → (2 / (2 · 𝑁)) < (𝐵𝐴))
263, 8resubcld 7859 . . . . . . 7 (𝜑 → (𝐵𝐴) ∈ ℝ)
27 2rp 9139 . . . . . . . . 9 2 ∈ ℝ+
2827a1i 9 . . . . . . . 8 (𝜑 → 2 ∈ ℝ+)
294nnrpd 9172 . . . . . . . 8 (𝜑𝑁 ∈ ℝ+)
3028, 29rpmulcld 9190 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
312, 26, 30ltdivmul2d 9226 . . . . . 6 (𝜑 → ((2 / (2 · 𝑁)) < (𝐵𝐴) ↔ 2 < ((𝐵𝐴) · (2 · 𝑁))))
3225, 31mpbid 145 . . . . 5 (𝜑 → 2 < ((𝐵𝐴) · (2 · 𝑁)))
333recnd 7516 . . . . . 6 (𝜑𝐵 ∈ ℂ)
348recnd 7516 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3518, 17mulcld 7508 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℂ)
3633, 34, 35subdird 7893 . . . . 5 (𝜑 → ((𝐵𝐴) · (2 · 𝑁)) = ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
3732, 36breqtrd 3869 . . . 4 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))))
38 qbtwnrelemcalc.lt . . . . 5 (𝜑𝑀 < (𝐴 · (2 · 𝑁)))
3912, 9, 7, 38ltsub2dd 8035 . . . 4 (𝜑 → ((𝐵 · (2 · 𝑁)) − (𝐴 · (2 · 𝑁))) < ((𝐵 · (2 · 𝑁)) − 𝑀))
402, 10, 13, 37, 39lttrd 7609 . . 3 (𝜑 → 2 < ((𝐵 · (2 · 𝑁)) − 𝑀))
4112, 2, 7ltaddsub2d 8023 . . 3 (𝜑 → ((𝑀 + 2) < (𝐵 · (2 · 𝑁)) ↔ 2 < ((𝐵 · (2 · 𝑁)) − 𝑀)))
4240, 41mpbird 165 . 2 (𝜑 → (𝑀 + 2) < (𝐵 · (2 · 𝑁)))
4312, 2readdcld 7517 . . 3 (𝜑 → (𝑀 + 2) ∈ ℝ)
4443, 3, 30ltdivmul2d 9226 . 2 (𝜑 → (((𝑀 + 2) / (2 · 𝑁)) < 𝐵 ↔ (𝑀 + 2) < (𝐵 · (2 · 𝑁))))
4542, 44mpbird 165 1 (𝜑 → ((𝑀 + 2) / (2 · 𝑁)) < 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1438   class class class wbr 3845  (class class class)co 5652  cr 7349  0cc0 7350  1c1 7351   + caddc 7353   · cmul 7355   < clt 7522  cmin 7653   # cap 8058   / cdiv 8139  cn 8422  2c2 8473  cz 8750  +crp 9134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-z 8751  df-rp 9135
This theorem is referenced by:  qbtwnre  9668
  Copyright terms: Public domain W3C validator