![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4z | GIF version |
Description: 4 is an integer. (Contributed by BJ, 26-Mar-2020.) |
Ref | Expression |
---|---|
4z | ⊢ 4 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn 9131 | . 2 ⊢ 4 ∈ ℕ | |
2 | 1 | nnzi 9324 | 1 ⊢ 4 ∈ ℤ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 4c4 9021 ℤcz 9303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7949 ax-resscn 7950 ax-1cn 7951 ax-1re 7952 ax-icn 7953 ax-addcl 7954 ax-addrcl 7955 ax-mulcl 7956 ax-addcom 7958 ax-addass 7960 ax-distr 7962 ax-i2m1 7963 ax-0lt1 7964 ax-0id 7966 ax-rnegex 7967 ax-cnre 7969 ax-pre-ltirr 7970 ax-pre-ltwlin 7971 ax-pre-lttrn 7972 ax-pre-ltadd 7974 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3151 df-un 3153 df-in 3155 df-ss 3162 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-int 3867 df-br 4026 df-opab 4087 df-id 4318 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-iota 5203 df-fun 5244 df-fv 5250 df-riota 5861 df-ov 5909 df-oprab 5910 df-mpo 5911 df-pnf 8042 df-mnf 8043 df-xr 8044 df-ltxr 8045 df-le 8046 df-sub 8178 df-neg 8179 df-inn 8969 df-2 9027 df-3 9028 df-4 9029 df-z 9304 |
This theorem is referenced by: fz0to4untppr 10176 fzo0to42pr 10273 iexpcyc 10689 sqoddm1div8 10738 4bc2eq6 10819 resqrexlemga 11141 ef01bndlem 11873 sin01bnd 11874 cos01bnd 11875 4dvdseven 12032 flodddiv4lt 12051 6gcd4e2 12106 6lcm4e12 12199 prm23lt5 12375 cnfldstr 14013 lgsdir2lem2 15073 m1lgs 15116 2lgsoddprmlem2 15118 |
Copyright terms: Public domain | W3C validator |