ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq GIF version

Theorem resqrexlemnmsq 10959
Description: Lemma for resqrex 10968. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnmsq (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10949 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5621 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9632 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
87resqcld 10614 . . . 4 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
98recnd 7927 . . 3 (𝜑 → ((𝐹𝑁)↑2) ∈ ℂ)
10 resqrexlemnmsq.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
114, 10ffvelrnd 5621 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ+)
1211rpred 9632 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
1312resqcld 10614 . . . 4 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1413recnd 7927 . . 3 (𝜑 → ((𝐹𝑀)↑2) ∈ ℂ)
152recnd 7927 . . 3 (𝜑𝐴 ∈ ℂ)
169, 14, 15nnncan2d 8244 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
178, 2resubcld 8279 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
1813, 2resubcld 8279 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ)
1917, 18resubcld 8279 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) ∈ ℝ)
20 1nn 8868 . . . . . . . 8 1 ∈ ℕ
2120a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
224, 21ffvelrnd 5621 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ+)
23 2z 9219 . . . . . . 7 2 ∈ ℤ
2423a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
2522, 24rpexpcld 10612 . . . . 5 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
26 4nn 9020 . . . . . . . 8 4 ∈ ℕ
2726a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℕ)
2827nnrpd 9630 . . . . . 6 (𝜑 → 4 ∈ ℝ+)
295nnzd 9312 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
30 1zzd 9218 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3129, 30zsubcld 9318 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
3228, 31rpexpcld 10612 . . . . 5 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3325, 32rpdivcld 9650 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
3433rpred 9632 . . 3 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
351, 2, 3resqrexlemover 10952 . . . . . 6 ((𝜑𝑀 ∈ ℕ) → 𝐴 < ((𝐹𝑀)↑2))
3610, 35mpdan 418 . . . . 5 (𝜑𝐴 < ((𝐹𝑀)↑2))
37 difrp 9628 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝐹𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
382, 13, 37syl2anc 409 . . . . 5 (𝜑 → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
3936, 38mpbid 146 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+)
4017, 39ltsubrpd 9665 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹𝑁)↑2) − 𝐴))
411, 2, 3resqrexlemcalc3 10958 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
425, 41mpdan 418 . . 3 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4319, 17, 34, 40, 42ltletrd 8321 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4416, 43eqbrtrrd 4006 1 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  {csn 3576   class class class wbr 3982   × cxp 4602  cfv 5188  (class class class)co 5842  cmpo 5844  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < clt 7933  cle 7934  cmin 8069   / cdiv 8568  cn 8857  2c2 8908  4c4 8910  cz 9191  +crp 9589  seqcseq 10380  cexp 10454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  resqrexlemnm  10960
  Copyright terms: Public domain W3C validator