| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version | ||
| Description: Lemma for resqrex 11532. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
| resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
| 2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | 1, 2, 3 | resqrexlemf 11513 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 4, 5 | ffvelcdmd 5770 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
| 7 | 6 | rpred 9888 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 8 | 7 | resqcld 10916 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
| 9 | 8 | recnd 8171 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
| 10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 11 | 4, 10 | ffvelcdmd 5770 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
| 12 | 11 | rpred 9888 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 13 | 12 | resqcld 10916 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
| 14 | 13 | recnd 8171 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
| 15 | 2 | recnd 8171 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | 9, 14, 15 | nnncan2d 8488 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
| 17 | 8, 2 | resubcld 8523 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
| 18 | 13, 2 | resubcld 8523 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
| 19 | 17, 18 | resubcld 8523 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
| 20 | 1nn 9117 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
| 22 | 4, 21 | ffvelcdmd 5770 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
| 23 | 2z 9470 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 25 | 22, 24 | rpexpcld 10914 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
| 26 | 4nn 9270 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
| 28 | 27 | nnrpd 9886 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
| 29 | 5 | nnzd 9564 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 30 | 1zzd 9469 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 31 | 29, 30 | zsubcld 9570 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 32 | 28, 31 | rpexpcld 10914 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
| 33 | 25, 32 | rpdivcld 9906 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
| 34 | 33 | rpred 9888 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
| 35 | 1, 2, 3 | resqrexlemover 11516 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 36 | 10, 35 | mpdan 421 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 37 | difrp 9884 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
| 38 | 2, 13, 37 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
| 39 | 36, 38 | mpbid 147 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
| 40 | 17, 39 | ltsubrpd 9921 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
| 41 | 1, 2, 3 | resqrexlemcalc3 11522 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 42 | 5, 41 | mpdan 421 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 43 | 19, 17, 34, 40, 42 | ltletrd 8566 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 44 | 16, 43 | eqbrtrrd 4106 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {csn 3666 class class class wbr 4082 × cxp 4716 ‘cfv 5317 (class class class)co 6000 ∈ cmpo 6002 ℝcr 7994 0cc0 7995 1c1 7996 + caddc 7998 < clt 8177 ≤ cle 8178 − cmin 8313 / cdiv 8815 ℕcn 9106 2c2 9157 4c4 9159 ℤcz 9442 ℝ+crp 9845 seqcseq 10664 ↑cexp 10755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-rp 9846 df-seqfrec 10665 df-exp 10756 |
| This theorem is referenced by: resqrexlemnm 11524 |
| Copyright terms: Public domain | W3C validator |