ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq GIF version

Theorem resqrexlemnmsq 10729
Description: Lemma for resqrex 10738. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnmsq (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 10719 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
64, 5ffvelrnd 5522 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9429 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
87resqcld 10390 . . . 4 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
98recnd 7758 . . 3 (𝜑 → ((𝐹𝑁)↑2) ∈ ℂ)
10 resqrexlemnmsq.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
114, 10ffvelrnd 5522 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ+)
1211rpred 9429 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
1312resqcld 10390 . . . 4 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1413recnd 7758 . . 3 (𝜑 → ((𝐹𝑀)↑2) ∈ ℂ)
152recnd 7758 . . 3 (𝜑𝐴 ∈ ℂ)
169, 14, 15nnncan2d 8072 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
178, 2resubcld 8107 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
1813, 2resubcld 8107 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ)
1917, 18resubcld 8107 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) ∈ ℝ)
20 1nn 8688 . . . . . . . 8 1 ∈ ℕ
2120a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
224, 21ffvelrnd 5522 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ+)
23 2z 9033 . . . . . . 7 2 ∈ ℤ
2423a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
2522, 24rpexpcld 10388 . . . . 5 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
26 4nn 8834 . . . . . . . 8 4 ∈ ℕ
2726a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℕ)
2827nnrpd 9428 . . . . . 6 (𝜑 → 4 ∈ ℝ+)
295nnzd 9123 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
30 1zzd 9032 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3129, 30zsubcld 9129 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
3228, 31rpexpcld 10388 . . . . 5 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3325, 32rpdivcld 9447 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
3433rpred 9429 . . 3 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
351, 2, 3resqrexlemover 10722 . . . . . 6 ((𝜑𝑀 ∈ ℕ) → 𝐴 < ((𝐹𝑀)↑2))
3610, 35mpdan 415 . . . . 5 (𝜑𝐴 < ((𝐹𝑀)↑2))
37 difrp 9426 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝐹𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
382, 13, 37syl2anc 406 . . . . 5 (𝜑 → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
3936, 38mpbid 146 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+)
4017, 39ltsubrpd 9462 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹𝑁)↑2) − 𝐴))
411, 2, 3resqrexlemcalc3 10728 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
425, 41mpdan 415 . . 3 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4319, 17, 34, 40, 42ltletrd 8149 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4416, 43eqbrtrrd 3920 1 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wcel 1463  {csn 3495   class class class wbr 3897   × cxp 4505  cfv 5091  (class class class)co 5740  cmpo 5742  cr 7583  0cc0 7584  1c1 7585   + caddc 7587   < clt 7764  cle 7765  cmin 7897   / cdiv 8392  cn 8677  2c2 8728  4c4 8730  cz 9005  +crp 9390  seqcseq 10158  cexp 10232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-rp 9391  df-seqfrec 10159  df-exp 10233
This theorem is referenced by:  resqrexlemnm  10730
  Copyright terms: Public domain W3C validator