| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version | ||
| Description: Lemma for resqrex 11279. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
| resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
| Ref | Expression |
|---|---|
| resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
| 2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | 1, 2, 3 | resqrexlemf 11260 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
| 5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 6 | 4, 5 | ffvelcdmd 5715 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
| 7 | 6 | rpred 9817 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
| 8 | 7 | resqcld 10842 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
| 9 | 8 | recnd 8100 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
| 10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 11 | 4, 10 | ffvelcdmd 5715 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
| 12 | 11 | rpred 9817 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
| 13 | 12 | resqcld 10842 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
| 14 | 13 | recnd 8100 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
| 15 | 2 | recnd 8100 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 16 | 9, 14, 15 | nnncan2d 8417 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
| 17 | 8, 2 | resubcld 8452 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
| 18 | 13, 2 | resubcld 8452 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
| 19 | 17, 18 | resubcld 8452 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
| 20 | 1nn 9046 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
| 22 | 4, 21 | ffvelcdmd 5715 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
| 23 | 2z 9399 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
| 25 | 22, 24 | rpexpcld 10840 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
| 26 | 4nn 9199 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
| 28 | 27 | nnrpd 9815 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
| 29 | 5 | nnzd 9493 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 30 | 1zzd 9398 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 31 | 29, 30 | zsubcld 9499 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
| 32 | 28, 31 | rpexpcld 10840 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
| 33 | 25, 32 | rpdivcld 9835 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
| 34 | 33 | rpred 9817 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
| 35 | 1, 2, 3 | resqrexlemover 11263 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 36 | 10, 35 | mpdan 421 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
| 37 | difrp 9813 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
| 38 | 2, 13, 37 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
| 39 | 36, 38 | mpbid 147 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
| 40 | 17, 39 | ltsubrpd 9850 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
| 41 | 1, 2, 3 | resqrexlemcalc3 11269 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 42 | 5, 41 | mpdan 421 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 43 | 19, 17, 34, 40, 42 | ltletrd 8495 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| 44 | 16, 43 | eqbrtrrd 4067 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 {csn 3632 class class class wbr 4043 × cxp 4672 ‘cfv 5270 (class class class)co 5943 ∈ cmpo 5945 ℝcr 7923 0cc0 7924 1c1 7925 + caddc 7927 < clt 8106 ≤ cle 8107 − cmin 8242 / cdiv 8744 ℕcn 9035 2c2 9086 4c4 9088 ℤcz 9371 ℝ+crp 9774 seqcseq 10590 ↑cexp 10681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-frec 6476 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 df-seqfrec 10591 df-exp 10682 |
| This theorem is referenced by: resqrexlemnm 11271 |
| Copyright terms: Public domain | W3C validator |