Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version |
Description: Lemma for resqrex 10968. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
Ref | Expression |
---|---|
resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemf 10949 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 4, 5 | ffvelrnd 5621 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
7 | 6 | rpred 9632 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
8 | 7 | resqcld 10614 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
9 | 8 | recnd 7927 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 4, 10 | ffvelrnd 5621 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
12 | 11 | rpred 9632 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
13 | 12 | resqcld 10614 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
14 | 13 | recnd 7927 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
15 | 2 | recnd 7927 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 9, 14, 15 | nnncan2d 8244 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
17 | 8, 2 | resubcld 8279 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
18 | 13, 2 | resubcld 8279 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
19 | 17, 18 | resubcld 8279 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
20 | 1nn 8868 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
22 | 4, 21 | ffvelrnd 5621 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
23 | 2z 9219 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
25 | 22, 24 | rpexpcld 10612 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
26 | 4nn 9020 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
28 | 27 | nnrpd 9630 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
29 | 5 | nnzd 9312 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
30 | 1zzd 9218 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
31 | 29, 30 | zsubcld 9318 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
32 | 28, 31 | rpexpcld 10612 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
33 | 25, 32 | rpdivcld 9650 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
34 | 33 | rpred 9632 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
35 | 1, 2, 3 | resqrexlemover 10952 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
36 | 10, 35 | mpdan 418 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
37 | difrp 9628 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
38 | 2, 13, 37 | syl2anc 409 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
39 | 36, 38 | mpbid 146 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
40 | 17, 39 | ltsubrpd 9665 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
41 | 1, 2, 3 | resqrexlemcalc3 10958 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
42 | 5, 41 | mpdan 418 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
43 | 19, 17, 34, 40, 42 | ltletrd 8321 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
44 | 16, 43 | eqbrtrrd 4006 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 {csn 3576 class class class wbr 3982 × cxp 4602 ‘cfv 5188 (class class class)co 5842 ∈ cmpo 5844 ℝcr 7752 0cc0 7753 1c1 7754 + caddc 7756 < clt 7933 ≤ cle 7934 − cmin 8069 / cdiv 8568 ℕcn 8857 2c2 8908 4c4 8910 ℤcz 9191 ℝ+crp 9589 seqcseq 10380 ↑cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-rp 9590 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: resqrexlemnm 10960 |
Copyright terms: Public domain | W3C validator |