![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version |
Description: Lemma for resqrex 11038. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
Ref | Expression |
---|---|
resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemf 11019 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 4, 5 | ffvelcdmd 5655 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
7 | 6 | rpred 9699 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
8 | 7 | resqcld 10683 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
9 | 8 | recnd 7989 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 4, 10 | ffvelcdmd 5655 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
12 | 11 | rpred 9699 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
13 | 12 | resqcld 10683 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
14 | 13 | recnd 7989 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
15 | 2 | recnd 7989 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 9, 14, 15 | nnncan2d 8306 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
17 | 8, 2 | resubcld 8341 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
18 | 13, 2 | resubcld 8341 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
19 | 17, 18 | resubcld 8341 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
20 | 1nn 8933 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
22 | 4, 21 | ffvelcdmd 5655 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
23 | 2z 9284 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
25 | 22, 24 | rpexpcld 10681 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
26 | 4nn 9085 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
28 | 27 | nnrpd 9697 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
29 | 5 | nnzd 9377 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
30 | 1zzd 9283 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
31 | 29, 30 | zsubcld 9383 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
32 | 28, 31 | rpexpcld 10681 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
33 | 25, 32 | rpdivcld 9717 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
34 | 33 | rpred 9699 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
35 | 1, 2, 3 | resqrexlemover 11022 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
36 | 10, 35 | mpdan 421 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
37 | difrp 9695 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
38 | 2, 13, 37 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
39 | 36, 38 | mpbid 147 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
40 | 17, 39 | ltsubrpd 9732 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
41 | 1, 2, 3 | resqrexlemcalc3 11028 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
42 | 5, 41 | mpdan 421 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
43 | 19, 17, 34, 40, 42 | ltletrd 8383 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
44 | 16, 43 | eqbrtrrd 4029 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 class class class wbr 4005 × cxp 4626 ‘cfv 5218 (class class class)co 5878 ∈ cmpo 5880 ℝcr 7813 0cc0 7814 1c1 7815 + caddc 7817 < clt 7995 ≤ cle 7996 − cmin 8131 / cdiv 8632 ℕcn 8922 2c2 8973 4c4 8975 ℤcz 9256 ℝ+crp 9656 seqcseq 10448 ↑cexp 10522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-frec 6395 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-n0 9180 df-z 9257 df-uz 9532 df-rp 9657 df-seqfrec 10449 df-exp 10523 |
This theorem is referenced by: resqrexlemnm 11030 |
Copyright terms: Public domain | W3C validator |