ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemnmsq GIF version

Theorem resqrexlemnmsq 11270
Description: Lemma for resqrex 11279. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemnmsq.n (𝜑𝑁 ∈ ℕ)
resqrexlemnmsq.m (𝜑𝑀 ∈ ℕ)
resqrexlemnmsq.nm (𝜑𝑁𝑀)
Assertion
Ref Expression
resqrexlemnmsq (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)

Proof of Theorem resqrexlemnmsq
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 11260 . . . . . . 7 (𝜑𝐹:ℕ⟶ℝ+)
5 resqrexlemnmsq.n . . . . . . 7 (𝜑𝑁 ∈ ℕ)
64, 5ffvelcdmd 5715 . . . . . 6 (𝜑 → (𝐹𝑁) ∈ ℝ+)
76rpred 9817 . . . . 5 (𝜑 → (𝐹𝑁) ∈ ℝ)
87resqcld 10842 . . . 4 (𝜑 → ((𝐹𝑁)↑2) ∈ ℝ)
98recnd 8100 . . 3 (𝜑 → ((𝐹𝑁)↑2) ∈ ℂ)
10 resqrexlemnmsq.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
114, 10ffvelcdmd 5715 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ℝ+)
1211rpred 9817 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℝ)
1312resqcld 10842 . . . 4 (𝜑 → ((𝐹𝑀)↑2) ∈ ℝ)
1413recnd 8100 . . 3 (𝜑 → ((𝐹𝑀)↑2) ∈ ℂ)
152recnd 8100 . . 3 (𝜑𝐴 ∈ ℂ)
169, 14, 15nnncan2d 8417 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) = (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)))
178, 2resubcld 8452 . . . 4 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ∈ ℝ)
1813, 2resubcld 8452 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ)
1917, 18resubcld 8452 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) ∈ ℝ)
20 1nn 9046 . . . . . . . 8 1 ∈ ℕ
2120a1i 9 . . . . . . 7 (𝜑 → 1 ∈ ℕ)
224, 21ffvelcdmd 5715 . . . . . 6 (𝜑 → (𝐹‘1) ∈ ℝ+)
23 2z 9399 . . . . . . 7 2 ∈ ℤ
2423a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
2522, 24rpexpcld 10840 . . . . 5 (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+)
26 4nn 9199 . . . . . . . 8 4 ∈ ℕ
2726a1i 9 . . . . . . 7 (𝜑 → 4 ∈ ℕ)
2827nnrpd 9815 . . . . . 6 (𝜑 → 4 ∈ ℝ+)
295nnzd 9493 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
30 1zzd 9398 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3129, 30zsubcld 9499 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ ℤ)
3228, 31rpexpcld 10840 . . . . 5 (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+)
3325, 32rpdivcld 9835 . . . 4 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+)
3433rpred 9817 . . 3 (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ)
351, 2, 3resqrexlemover 11263 . . . . . 6 ((𝜑𝑀 ∈ ℕ) → 𝐴 < ((𝐹𝑀)↑2))
3610, 35mpdan 421 . . . . 5 (𝜑𝐴 < ((𝐹𝑀)↑2))
37 difrp 9813 . . . . . 6 ((𝐴 ∈ ℝ ∧ ((𝐹𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
382, 13, 37syl2anc 411 . . . . 5 (𝜑 → (𝐴 < ((𝐹𝑀)↑2) ↔ (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+))
3936, 38mpbid 147 . . . 4 (𝜑 → (((𝐹𝑀)↑2) − 𝐴) ∈ ℝ+)
4017, 39ltsubrpd 9850 . . 3 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹𝑁)↑2) − 𝐴))
411, 2, 3resqrexlemcalc3 11269 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
425, 41mpdan 421 . . 3 (𝜑 → (((𝐹𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4319, 17, 34, 40, 42ltletrd 8495 . 2 (𝜑 → ((((𝐹𝑁)↑2) − 𝐴) − (((𝐹𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
4416, 43eqbrtrrd 4067 1 (𝜑 → (((𝐹𝑁)↑2) − ((𝐹𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wcel 2175  {csn 3632   class class class wbr 4043   × cxp 4672  cfv 5270  (class class class)co 5943  cmpo 5945  cr 7923  0cc0 7924  1c1 7925   + caddc 7927   < clt 8106  cle 8107  cmin 8242   / cdiv 8744  cn 9035  2c2 9086  4c4 9088  cz 9371  +crp 9774  seqcseq 10590  cexp 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682
This theorem is referenced by:  resqrexlemnm  11271
  Copyright terms: Public domain W3C validator