Step | Hyp | Ref
| Expression |
1 | | resqrexlemex.seq |
. . . . . . . 8
β’ πΉ = seq1((π¦ β β+, π§ β β+
β¦ ((π¦ + (π΄ / π¦)) / 2)), (β Γ {(1 + π΄)})) |
2 | | resqrexlemex.a |
. . . . . . . 8
β’ (π β π΄ β β) |
3 | | resqrexlemex.agt0 |
. . . . . . . 8
β’ (π β 0 β€ π΄) |
4 | 1, 2, 3 | resqrexlemf 11018 |
. . . . . . 7
β’ (π β πΉ:ββΆβ+) |
5 | | resqrexlemnmsq.n |
. . . . . . 7
β’ (π β π β β) |
6 | 4, 5 | ffvelcdmd 5654 |
. . . . . 6
β’ (π β (πΉβπ) β
β+) |
7 | 6 | rpred 9698 |
. . . . 5
β’ (π β (πΉβπ) β β) |
8 | 7 | resqcld 10682 |
. . . 4
β’ (π β ((πΉβπ)β2) β β) |
9 | 8 | recnd 7988 |
. . 3
β’ (π β ((πΉβπ)β2) β β) |
10 | | resqrexlemnmsq.m |
. . . . . . 7
β’ (π β π β β) |
11 | 4, 10 | ffvelcdmd 5654 |
. . . . . 6
β’ (π β (πΉβπ) β
β+) |
12 | 11 | rpred 9698 |
. . . . 5
β’ (π β (πΉβπ) β β) |
13 | 12 | resqcld 10682 |
. . . 4
β’ (π β ((πΉβπ)β2) β β) |
14 | 13 | recnd 7988 |
. . 3
β’ (π β ((πΉβπ)β2) β β) |
15 | 2 | recnd 7988 |
. . 3
β’ (π β π΄ β β) |
16 | 9, 14, 15 | nnncan2d 8305 |
. 2
β’ (π β ((((πΉβπ)β2) β π΄) β (((πΉβπ)β2) β π΄)) = (((πΉβπ)β2) β ((πΉβπ)β2))) |
17 | 8, 2 | resubcld 8340 |
. . . 4
β’ (π β (((πΉβπ)β2) β π΄) β β) |
18 | 13, 2 | resubcld 8340 |
. . . 4
β’ (π β (((πΉβπ)β2) β π΄) β β) |
19 | 17, 18 | resubcld 8340 |
. . 3
β’ (π β ((((πΉβπ)β2) β π΄) β (((πΉβπ)β2) β π΄)) β β) |
20 | | 1nn 8932 |
. . . . . . . 8
β’ 1 β
β |
21 | 20 | a1i 9 |
. . . . . . 7
β’ (π β 1 β
β) |
22 | 4, 21 | ffvelcdmd 5654 |
. . . . . 6
β’ (π β (πΉβ1) β
β+) |
23 | | 2z 9283 |
. . . . . . 7
β’ 2 β
β€ |
24 | 23 | a1i 9 |
. . . . . 6
β’ (π β 2 β
β€) |
25 | 22, 24 | rpexpcld 10680 |
. . . . 5
β’ (π β ((πΉβ1)β2) β
β+) |
26 | | 4nn 9084 |
. . . . . . . 8
β’ 4 β
β |
27 | 26 | a1i 9 |
. . . . . . 7
β’ (π β 4 β
β) |
28 | 27 | nnrpd 9696 |
. . . . . 6
β’ (π β 4 β
β+) |
29 | 5 | nnzd 9376 |
. . . . . . 7
β’ (π β π β β€) |
30 | | 1zzd 9282 |
. . . . . . 7
β’ (π β 1 β
β€) |
31 | 29, 30 | zsubcld 9382 |
. . . . . 6
β’ (π β (π β 1) β β€) |
32 | 28, 31 | rpexpcld 10680 |
. . . . 5
β’ (π β (4β(π β 1)) β
β+) |
33 | 25, 32 | rpdivcld 9716 |
. . . 4
β’ (π β (((πΉβ1)β2) / (4β(π β 1))) β
β+) |
34 | 33 | rpred 9698 |
. . 3
β’ (π β (((πΉβ1)β2) / (4β(π β 1))) β
β) |
35 | 1, 2, 3 | resqrexlemover 11021 |
. . . . . 6
β’ ((π β§ π β β) β π΄ < ((πΉβπ)β2)) |
36 | 10, 35 | mpdan 421 |
. . . . 5
β’ (π β π΄ < ((πΉβπ)β2)) |
37 | | difrp 9694 |
. . . . . 6
β’ ((π΄ β β β§ ((πΉβπ)β2) β β) β (π΄ < ((πΉβπ)β2) β (((πΉβπ)β2) β π΄) β
β+)) |
38 | 2, 13, 37 | syl2anc 411 |
. . . . 5
β’ (π β (π΄ < ((πΉβπ)β2) β (((πΉβπ)β2) β π΄) β
β+)) |
39 | 36, 38 | mpbid 147 |
. . . 4
β’ (π β (((πΉβπ)β2) β π΄) β
β+) |
40 | 17, 39 | ltsubrpd 9731 |
. . 3
β’ (π β ((((πΉβπ)β2) β π΄) β (((πΉβπ)β2) β π΄)) < (((πΉβπ)β2) β π΄)) |
41 | 1, 2, 3 | resqrexlemcalc3 11027 |
. . . 4
β’ ((π β§ π β β) β (((πΉβπ)β2) β π΄) β€ (((πΉβ1)β2) / (4β(π β 1)))) |
42 | 5, 41 | mpdan 421 |
. . 3
β’ (π β (((πΉβπ)β2) β π΄) β€ (((πΉβ1)β2) / (4β(π β 1)))) |
43 | 19, 17, 34, 40, 42 | ltletrd 8382 |
. 2
β’ (π β ((((πΉβπ)β2) β π΄) β (((πΉβπ)β2) β π΄)) < (((πΉβ1)β2) / (4β(π β 1)))) |
44 | 16, 43 | eqbrtrrd 4029 |
1
β’ (π β (((πΉβπ)β2) β ((πΉβπ)β2)) < (((πΉβ1)β2) / (4β(π β 1)))) |