![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resqrexlemnmsq | GIF version |
Description: Lemma for resqrex 11173. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.) |
Ref | Expression |
---|---|
resqrexlemex.seq | ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) |
resqrexlemex.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
resqrexlemex.agt0 | ⊢ (𝜑 → 0 ≤ 𝐴) |
resqrexlemnmsq.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
resqrexlemnmsq.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
resqrexlemnmsq.nm | ⊢ (𝜑 → 𝑁 ≤ 𝑀) |
Ref | Expression |
---|---|
resqrexlemnmsq | ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqrexlemex.seq | . . . . . . . 8 ⊢ 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)})) | |
2 | resqrexlemex.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | resqrexlemex.agt0 | . . . . . . . 8 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | resqrexlemf 11154 | . . . . . . 7 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ+) |
5 | resqrexlemnmsq.n | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
6 | 4, 5 | ffvelcdmd 5695 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
7 | 6 | rpred 9765 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ) |
8 | 7 | resqcld 10773 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℝ) |
9 | 8 | recnd 8050 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑁)↑2) ∈ ℂ) |
10 | resqrexlemnmsq.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
11 | 4, 10 | ffvelcdmd 5695 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ+) |
12 | 11 | rpred 9765 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℝ) |
13 | 12 | resqcld 10773 | . . . 4 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℝ) |
14 | 13 | recnd 8050 | . . 3 ⊢ (𝜑 → ((𝐹‘𝑀)↑2) ∈ ℂ) |
15 | 2 | recnd 8050 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
16 | 9, 14, 15 | nnncan2d 8367 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) = (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2))) |
17 | 8, 2 | resubcld 8402 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ∈ ℝ) |
18 | 13, 2 | resubcld 8402 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ) |
19 | 17, 18 | resubcld 8402 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) ∈ ℝ) |
20 | 1nn 8995 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
21 | 20 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℕ) |
22 | 4, 21 | ffvelcdmd 5695 | . . . . . 6 ⊢ (𝜑 → (𝐹‘1) ∈ ℝ+) |
23 | 2z 9348 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
24 | 23 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℤ) |
25 | 22, 24 | rpexpcld 10771 | . . . . 5 ⊢ (𝜑 → ((𝐹‘1)↑2) ∈ ℝ+) |
26 | 4nn 9148 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
27 | 26 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℕ) |
28 | 27 | nnrpd 9763 | . . . . . 6 ⊢ (𝜑 → 4 ∈ ℝ+) |
29 | 5 | nnzd 9441 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
30 | 1zzd 9347 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
31 | 29, 30 | zsubcld 9447 | . . . . . 6 ⊢ (𝜑 → (𝑁 − 1) ∈ ℤ) |
32 | 28, 31 | rpexpcld 10771 | . . . . 5 ⊢ (𝜑 → (4↑(𝑁 − 1)) ∈ ℝ+) |
33 | 25, 32 | rpdivcld 9783 | . . . 4 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ+) |
34 | 33 | rpred 9765 | . . 3 ⊢ (𝜑 → (((𝐹‘1)↑2) / (4↑(𝑁 − 1))) ∈ ℝ) |
35 | 1, 2, 3 | resqrexlemover 11157 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 ∈ ℕ) → 𝐴 < ((𝐹‘𝑀)↑2)) |
36 | 10, 35 | mpdan 421 | . . . . 5 ⊢ (𝜑 → 𝐴 < ((𝐹‘𝑀)↑2)) |
37 | difrp 9761 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ ((𝐹‘𝑀)↑2) ∈ ℝ) → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) | |
38 | 2, 13, 37 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝐴 < ((𝐹‘𝑀)↑2) ↔ (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+)) |
39 | 36, 38 | mpbid 147 | . . . 4 ⊢ (𝜑 → (((𝐹‘𝑀)↑2) − 𝐴) ∈ ℝ+) |
40 | 17, 39 | ltsubrpd 9798 | . . 3 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘𝑁)↑2) − 𝐴)) |
41 | 1, 2, 3 | resqrexlemcalc3 11163 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ) → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
42 | 5, 41 | mpdan 421 | . . 3 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − 𝐴) ≤ (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
43 | 19, 17, 34, 40, 42 | ltletrd 8444 | . 2 ⊢ (𝜑 → ((((𝐹‘𝑁)↑2) − 𝐴) − (((𝐹‘𝑀)↑2) − 𝐴)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
44 | 16, 43 | eqbrtrrd 4054 | 1 ⊢ (𝜑 → (((𝐹‘𝑁)↑2) − ((𝐹‘𝑀)↑2)) < (((𝐹‘1)↑2) / (4↑(𝑁 − 1)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {csn 3619 class class class wbr 4030 × cxp 4658 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 ℝcr 7873 0cc0 7874 1c1 7875 + caddc 7877 < clt 8056 ≤ cle 8057 − cmin 8192 / cdiv 8693 ℕcn 8984 2c2 9035 4c4 9037 ℤcz 9320 ℝ+crp 9722 seqcseq 10521 ↑cexp 10612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 |
This theorem is referenced by: resqrexlemnm 11165 |
Copyright terms: Public domain | W3C validator |