![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flodddiv4t2lthalf | GIF version |
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
Ref | Expression |
---|---|
flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flodddiv4lt 12077 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
2 | 4nn 9145 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
3 | znq 9689 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
4 | 2, 3 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
5 | 4 | flqcld 10346 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
6 | 5 | zred 9439 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
8 | qre 9690 | . . . . . 6 ⊢ ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ) | |
9 | 4, 8 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ) |
11 | 2re 9052 | . . . . . 6 ⊢ 2 ∈ ℝ | |
12 | 2pos 9073 | . . . . . 6 ⊢ 0 < 2 | |
13 | 11, 12 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
14 | 13 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2)) |
15 | ltmul1 8611 | . . . 4 ⊢ (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) | |
16 | 7, 10, 14, 15 | syl3anc 1249 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
17 | 1, 16 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
18 | zcn 9322 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
19 | 18 | halfcld 9227 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
20 | 2cnd 9055 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
21 | 2ap0 9075 | . . . . . 6 ⊢ 2 # 0 | |
22 | 21 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
23 | 19, 20, 22 | divcanap1d 8810 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
24 | 18, 20, 20, 22, 22 | divdivap1d 8841 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
25 | 2t2e4 9136 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
26 | 25 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
27 | 26 | oveq2d 5934 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
28 | 24, 27 | eqtrd 2226 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
29 | 28 | oveq1d 5933 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
30 | 23, 29 | eqtr3d 2228 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
31 | 30 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
32 | 17, 31 | breqtrrd 4057 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 0cc0 7872 · cmul 7877 < clt 8054 # cap 8600 / cdiv 8691 ℕcn 8982 2c2 9033 4c4 9035 ℤcz 9317 ℚcq 9684 ⌊cfl 10337 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-q 9685 df-rp 9720 df-fl 10339 df-dvds 11931 |
This theorem is referenced by: gausslemma2dlem0e 15169 |
Copyright terms: Public domain | W3C validator |