ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4t2lthalf GIF version

Theorem flodddiv4t2lthalf 11475
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
flodddiv4t2lthalf ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))

Proof of Theorem flodddiv4t2lthalf
StepHypRef Expression
1 flodddiv4lt 11474 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
2 4nn 8780 . . . . . . . 8 4 ∈ ℕ
3 znq 9311 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
42, 3mpan2 419 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ)
54flqcld 9936 . . . . . 6 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ)
65zred 9070 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ)
76adantr 272 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ)
8 qre 9312 . . . . . 6 ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ)
94, 8syl 14 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
109adantr 272 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ)
11 2re 8693 . . . . . 6 2 ∈ ℝ
12 2pos 8714 . . . . . 6 0 < 2
1311, 12pm3.2i 268 . . . . 5 (2 ∈ ℝ ∧ 0 < 2)
1413a1i 9 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2))
15 ltmul1 8265 . . . 4 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
167, 10, 14, 15syl3anc 1197 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)))
171, 16mpbid 146 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))
18 zcn 8956 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1918halfcld 8861 . . . . 5 (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ)
20 2cnd 8696 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℂ)
21 2ap0 8716 . . . . . 6 2 # 0
2221a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 # 0)
2319, 20, 22divcanap1d 8457 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2))
2418, 20, 20, 22, 22divdivap1d 8488 . . . . . 6 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
25 2t2e4 8771 . . . . . . . 8 (2 · 2) = 4
2625a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → (2 · 2) = 4)
2726oveq2d 5742 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4))
2824, 27eqtrd 2145 . . . . 5 (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4))
2928oveq1d 5741 . . . 4 (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2))
3023, 29eqtr3d 2147 . . 3 (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2))
3130adantr 272 . 2 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2))
3217, 31breqtrrd 3919 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1312  wcel 1461   class class class wbr 3893  cfv 5079  (class class class)co 5726  cr 7539  0cc0 7540   · cmul 7545   < clt 7717   # cap 8254   / cdiv 8338  cn 8623  2c2 8674  4c4 8676  cz 8951  cq 9306  cfl 9927  cdvds 11334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7629  ax-resscn 7630  ax-1cn 7631  ax-1re 7632  ax-icn 7633  ax-addcl 7634  ax-addrcl 7635  ax-mulcl 7636  ax-mulrcl 7637  ax-addcom 7638  ax-mulcom 7639  ax-addass 7640  ax-mulass 7641  ax-distr 7642  ax-i2m1 7643  ax-0lt1 7644  ax-1rid 7645  ax-0id 7646  ax-rnegex 7647  ax-precex 7648  ax-cnre 7649  ax-pre-ltirr 7650  ax-pre-ltwlin 7651  ax-pre-lttrn 7652  ax-pre-apti 7653  ax-pre-ltadd 7654  ax-pre-mulgt0 7655  ax-pre-mulext 7656  ax-arch 7657
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5989  df-2nd 5990  df-pnf 7719  df-mnf 7720  df-xr 7721  df-ltxr 7722  df-le 7723  df-sub 7851  df-neg 7852  df-reap 8248  df-ap 8255  df-div 8339  df-inn 8624  df-2 8682  df-3 8683  df-4 8684  df-n0 8875  df-z 8952  df-q 9307  df-rp 9337  df-fl 9929  df-dvds 11335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator