![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > flodddiv4t2lthalf | GIF version |
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
Ref | Expression |
---|---|
flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flodddiv4lt 11474 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
2 | 4nn 8780 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
3 | znq 9311 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
4 | 2, 3 | mpan2 419 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
5 | 4 | flqcld 9936 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
6 | 5 | zred 9070 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
7 | 6 | adantr 272 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
8 | qre 9312 | . . . . . 6 ⊢ ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ) | |
9 | 4, 8 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
10 | 9 | adantr 272 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ) |
11 | 2re 8693 | . . . . . 6 ⊢ 2 ∈ ℝ | |
12 | 2pos 8714 | . . . . . 6 ⊢ 0 < 2 | |
13 | 11, 12 | pm3.2i 268 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
14 | 13 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2)) |
15 | ltmul1 8265 | . . . 4 ⊢ (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) | |
16 | 7, 10, 14, 15 | syl3anc 1197 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
17 | 1, 16 | mpbid 146 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
18 | zcn 8956 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
19 | 18 | halfcld 8861 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
20 | 2cnd 8696 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
21 | 2ap0 8716 | . . . . . 6 ⊢ 2 # 0 | |
22 | 21 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
23 | 19, 20, 22 | divcanap1d 8457 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
24 | 18, 20, 20, 22, 22 | divdivap1d 8488 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
25 | 2t2e4 8771 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
26 | 25 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
27 | 26 | oveq2d 5742 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
28 | 24, 27 | eqtrd 2145 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
29 | 28 | oveq1d 5741 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
30 | 23, 29 | eqtr3d 2147 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
31 | 30 | adantr 272 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
32 | 17, 31 | breqtrrd 3919 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1312 ∈ wcel 1461 class class class wbr 3893 ‘cfv 5079 (class class class)co 5726 ℝcr 7539 0cc0 7540 · cmul 7545 < clt 7717 # cap 8254 / cdiv 8338 ℕcn 8623 2c2 8674 4c4 8676 ℤcz 8951 ℚcq 9306 ⌊cfl 9927 ∥ cdvds 11334 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-cnex 7629 ax-resscn 7630 ax-1cn 7631 ax-1re 7632 ax-icn 7633 ax-addcl 7634 ax-addrcl 7635 ax-mulcl 7636 ax-mulrcl 7637 ax-addcom 7638 ax-mulcom 7639 ax-addass 7640 ax-mulass 7641 ax-distr 7642 ax-i2m1 7643 ax-0lt1 7644 ax-1rid 7645 ax-0id 7646 ax-rnegex 7647 ax-precex 7648 ax-cnre 7649 ax-pre-ltirr 7650 ax-pre-ltwlin 7651 ax-pre-lttrn 7652 ax-pre-apti 7653 ax-pre-ltadd 7654 ax-pre-mulgt0 7655 ax-pre-mulext 7656 ax-arch 7657 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-po 4176 df-iso 4177 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5989 df-2nd 5990 df-pnf 7719 df-mnf 7720 df-xr 7721 df-ltxr 7722 df-le 7723 df-sub 7851 df-neg 7852 df-reap 8248 df-ap 8255 df-div 8339 df-inn 8624 df-2 8682 df-3 8683 df-4 8684 df-n0 8875 df-z 8952 df-q 9307 df-rp 9337 df-fl 9929 df-dvds 11335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |