| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flodddiv4t2lthalf | GIF version | ||
| Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt 12249 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
| 2 | 4nn 9200 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 3 | znq 9745 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 4 | 2, 3 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
| 5 | 4 | flqcld 10420 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 6 | 5 | zred 9495 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 8 | qre 9746 | . . . . . 6 ⊢ ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ) | |
| 9 | 4, 8 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ) |
| 11 | 2re 9106 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 12 | 2pos 9127 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 11, 12 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 14 | 13 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2)) |
| 15 | ltmul1 8665 | . . . 4 ⊢ (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) | |
| 16 | 7, 10, 14, 15 | syl3anc 1250 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 17 | 1, 16 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
| 18 | zcn 9377 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18 | halfcld 9282 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
| 20 | 2cnd 9109 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 21 | 2ap0 9129 | . . . . . 6 ⊢ 2 # 0 | |
| 22 | 21 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 23 | 19, 20, 22 | divcanap1d 8864 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
| 24 | 18, 20, 20, 22, 22 | divdivap1d 8895 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 25 | 2t2e4 9191 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 26 | 25 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
| 27 | 26 | oveq2d 5960 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
| 28 | 24, 27 | eqtrd 2238 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
| 29 | 28 | oveq1d 5959 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
| 30 | 23, 29 | eqtr3d 2240 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 31 | 30 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 32 | 17, 31 | breqtrrd 4072 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 ℝcr 7924 0cc0 7925 · cmul 7930 < clt 8107 # cap 8654 / cdiv 8745 ℕcn 9036 2c2 9087 4c4 9089 ℤcz 9372 ℚcq 9740 ⌊cfl 10411 ∥ cdvds 12098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-q 9741 df-rp 9776 df-fl 10413 df-dvds 12099 |
| This theorem is referenced by: gausslemma2dlem0e 15530 |
| Copyright terms: Public domain | W3C validator |