| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flodddiv4t2lthalf | GIF version | ||
| Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
| Ref | Expression |
|---|---|
| flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flodddiv4lt 12364 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
| 2 | 4nn 9235 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
| 3 | znq 9780 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 4 | 2, 3 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
| 5 | 4 | flqcld 10457 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 6 | 5 | zred 9530 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 8 | qre 9781 | . . . . . 6 ⊢ ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ) | |
| 9 | 4, 8 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ) |
| 11 | 2re 9141 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 12 | 2pos 9162 | . . . . . 6 ⊢ 0 < 2 | |
| 13 | 11, 12 | pm3.2i 272 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 14 | 13 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2)) |
| 15 | ltmul1 8700 | . . . 4 ⊢ (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) | |
| 16 | 7, 10, 14, 15 | syl3anc 1250 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
| 17 | 1, 16 | mpbid 147 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
| 18 | zcn 9412 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18 | halfcld 9317 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
| 20 | 2cnd 9144 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 21 | 2ap0 9164 | . . . . . 6 ⊢ 2 # 0 | |
| 22 | 21 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 23 | 19, 20, 22 | divcanap1d 8899 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
| 24 | 18, 20, 20, 22, 22 | divdivap1d 8930 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 25 | 2t2e4 9226 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
| 26 | 25 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
| 27 | 26 | oveq2d 5983 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
| 28 | 24, 27 | eqtrd 2240 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
| 29 | 28 | oveq1d 5982 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
| 30 | 23, 29 | eqtr3d 2242 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 31 | 30 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
| 32 | 17, 31 | breqtrrd 4087 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℝcr 7959 0cc0 7960 · cmul 7965 < clt 8142 # cap 8689 / cdiv 8780 ℕcn 9071 2c2 9122 4c4 9124 ℤcz 9407 ℚcq 9775 ⌊cfl 10448 ∥ cdvds 12213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-q 9776 df-rp 9811 df-fl 10450 df-dvds 12214 |
| This theorem is referenced by: gausslemma2dlem0e 15645 |
| Copyright terms: Public domain | W3C validator |