Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > flodddiv4t2lthalf | GIF version |
Description: The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) |
Ref | Expression |
---|---|
flodddiv4t2lthalf | ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flodddiv4lt 11873 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | |
2 | 4nn 9020 | . . . . . . . 8 ⊢ 4 ∈ ℕ | |
3 | znq 9562 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
4 | 2, 3 | mpan2 422 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℚ) |
5 | 4 | flqcld 10212 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℤ) |
6 | 5 | zred 9313 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 4)) ∈ ℝ) |
7 | 6 | adantr 274 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
8 | qre 9563 | . . . . . 6 ⊢ ((𝑁 / 4) ∈ ℚ → (𝑁 / 4) ∈ ℝ) | |
9 | 4, 8 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ) |
10 | 9 | adantr 274 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 4) ∈ ℝ) |
11 | 2re 8927 | . . . . . 6 ⊢ 2 ∈ ℝ | |
12 | 2pos 8948 | . . . . . 6 ⊢ 0 < 2 | |
13 | 11, 12 | pm3.2i 270 | . . . . 5 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
14 | 13 | a1i 9 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (2 ∈ ℝ ∧ 0 < 2)) |
15 | ltmul1 8490 | . . . 4 ⊢ (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) | |
16 | 7, 10, 14, 15 | syl3anc 1228 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) < (𝑁 / 4) ↔ ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2))) |
17 | 1, 16 | mpbid 146 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < ((𝑁 / 4) · 2)) |
18 | zcn 9196 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
19 | 18 | halfcld 9101 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) ∈ ℂ) |
20 | 2cnd 8930 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
21 | 2ap0 8950 | . . . . . 6 ⊢ 2 # 0 | |
22 | 21 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
23 | 19, 20, 22 | divcanap1d 8687 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = (𝑁 / 2)) |
24 | 18, 20, 20, 22, 22 | divdivap1d 8718 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
25 | 2t2e4 9011 | . . . . . . . 8 ⊢ (2 · 2) = 4 | |
26 | 25 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 · 2) = 4) |
27 | 26 | oveq2d 5858 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2 · 2)) = (𝑁 / 4)) |
28 | 24, 27 | eqtrd 2198 | . . . . 5 ⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) / 2) = (𝑁 / 4)) |
29 | 28 | oveq1d 5857 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 / 2) / 2) · 2) = ((𝑁 / 4) · 2)) |
30 | 23, 29 | eqtr3d 2200 | . . 3 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
31 | 30 | adantr 274 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (𝑁 / 2) = ((𝑁 / 4) · 2)) |
32 | 17, 31 | breqtrrd 4010 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℝcr 7752 0cc0 7753 · cmul 7758 < clt 7933 # cap 8479 / cdiv 8568 ℕcn 8857 2c2 8908 4c4 8910 ℤcz 9191 ℚcq 9557 ⌊cfl 10203 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 df-fl 10205 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |