![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 8t6e48 | GIF version |
Description: 8 times 6 equals 48. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
8t6e48 | ⊢ (8 · 6) = ;48 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn0 9212 | . 2 ⊢ 8 ∈ ℕ0 | |
2 | 5nn0 9209 | . 2 ⊢ 5 ∈ ℕ0 | |
3 | df-6 8995 | . 2 ⊢ 6 = (5 + 1) | |
4 | 8t5e40 9514 | . . 3 ⊢ (8 · 5) = ;40 | |
5 | 4nn0 9208 | . . . 4 ⊢ 4 ∈ ℕ0 | |
6 | 5 | dec0u 9417 | . . 3 ⊢ (;10 · 4) = ;40 |
7 | 4, 6 | eqtr4i 2211 | . 2 ⊢ (8 · 5) = (;10 · 4) |
8 | dfdec10 9400 | . . 3 ⊢ ;48 = ((;10 · 4) + 8) | |
9 | 8 | eqcomi 2191 | . 2 ⊢ ((;10 · 4) + 8) = ;48 |
10 | 1, 2, 3, 7, 9 | 4t3lem 9493 | 1 ⊢ (8 · 6) = ;48 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 (class class class)co 5888 0cc0 7824 1c1 7825 + caddc 7827 · cmul 7829 4c4 8985 5c5 8986 6c6 8987 8c8 8989 ;cdc 9397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-cnre 7935 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-iota 5190 df-fun 5230 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-sub 8143 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-n0 9190 df-dec 9398 |
This theorem is referenced by: 8t7e56 9516 |
Copyright terms: Public domain | W3C validator |