![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 5t5e25 | GIF version |
Description: 5 times 5 equals 25. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5t5e25 | ⊢ (5 · 5) = ;25 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 9260 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 4nn0 9259 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | df-5 9044 | . 2 ⊢ 5 = (4 + 1) | |
4 | 5t4e20 9549 | . . 3 ⊢ (5 · 4) = ;20 | |
5 | 2nn0 9257 | . . . 4 ⊢ 2 ∈ ℕ0 | |
6 | 5 | dec0u 9468 | . . 3 ⊢ (;10 · 2) = ;20 |
7 | 4, 6 | eqtr4i 2217 | . 2 ⊢ (5 · 4) = (;10 · 2) |
8 | dfdec10 9451 | . . 3 ⊢ ;25 = ((;10 · 2) + 5) | |
9 | 8 | eqcomi 2197 | . 2 ⊢ ((;10 · 2) + 5) = ;25 |
10 | 1, 2, 3, 7, 9 | 4t3lem 9544 | 1 ⊢ (5 · 5) = ;25 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 2c2 9033 4c4 9035 5c5 9036 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |