![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6t6e36 | GIF version |
Description: 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6t6e36 | ⊢ (6 · 6) = ;36 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 8757 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 5nn0 8756 | . 2 ⊢ 5 ∈ ℕ0 | |
3 | df-6 8548 | . 2 ⊢ 6 = (5 + 1) | |
4 | 6t5e30 9046 | . . 3 ⊢ (6 · 5) = ;30 | |
5 | 3nn0 8754 | . . . 4 ⊢ 3 ∈ ℕ0 | |
6 | 5 | dec0u 8960 | . . 3 ⊢ (;10 · 3) = ;30 |
7 | 4, 6 | eqtr4i 2112 | . 2 ⊢ (6 · 5) = (;10 · 3) |
8 | dfdec10 8943 | . . 3 ⊢ ;36 = ((;10 · 3) + 6) | |
9 | 8 | eqcomi 2093 | . 2 ⊢ ((;10 · 3) + 6) = ;36 |
10 | 1, 2, 3, 7, 9 | 4t3lem 9036 | 1 ⊢ (6 · 6) = ;36 |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 (class class class)co 5668 0cc0 7413 1c1 7414 + caddc 7416 · cmul 7418 3c3 8537 5c5 8539 6c6 8540 ;cdc 8940 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3965 ax-pow 4017 ax-pr 4047 ax-setind 4368 ax-cnex 7499 ax-resscn 7500 ax-1cn 7501 ax-1re 7502 ax-icn 7503 ax-addcl 7504 ax-addrcl 7505 ax-mulcl 7506 ax-addcom 7508 ax-mulcom 7509 ax-addass 7510 ax-mulass 7511 ax-distr 7512 ax-i2m1 7513 ax-1rid 7515 ax-0id 7516 ax-rnegex 7517 ax-cnre 7519 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2624 df-sbc 2844 df-dif 3004 df-un 3006 df-in 3008 df-ss 3015 df-pw 3437 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-int 3697 df-br 3854 df-opab 3908 df-id 4131 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-iota 4995 df-fun 5032 df-fv 5038 df-riota 5624 df-ov 5671 df-oprab 5672 df-mpt2 5673 df-sub 7718 df-inn 8486 df-2 8544 df-3 8545 df-4 8546 df-5 8547 df-6 8548 df-7 8549 df-8 8550 df-9 8551 df-n0 8737 df-dec 8941 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |