| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemofff | GIF version | ||
| Description: Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemofff | ⊢ (𝜑 → 𝐺:N⟶R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | 1 | ffvelcdmda 5709 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐹‘𝑎) ∈ R) |
| 3 | 1sr 7846 | . . . 4 ⊢ 1R ∈ R | |
| 4 | addclsr 7848 | . . . 4 ⊢ (((𝐹‘𝑎) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑎) +R 1R) ∈ R) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → ((𝐹‘𝑎) +R 1R) ∈ R) |
| 6 | caucvgsrlembnd.bnd | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 7 | 6 | caucvgsrlemasr 7885 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ R) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → 𝐴 ∈ R) |
| 9 | m1r 7847 | . . . 4 ⊢ -1R ∈ R | |
| 10 | mulclsr 7849 | . . . 4 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 11 | 8, 9, 10 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐴 ·R -1R) ∈ R) |
| 12 | addclsr 7848 | . . 3 ⊢ ((((𝐹‘𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
| 13 | 5, 11, 12 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
| 14 | caucvgsrlembnd.offset | . 2 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 15 | 13, 14 | fmptd 5728 | 1 ⊢ (𝜑 → 𝐺:N⟶R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 〈cop 3635 class class class wbr 4043 ↦ cmpt 4104 ⟶wf 5264 ‘cfv 5268 (class class class)co 5934 1oc1o 6485 [cec 6608 Ncnpi 7367 <N clti 7370 ~Q ceq 7374 *Qcrq 7379 <Q cltq 7380 1Pc1p 7387 +P cpp 7388 ~R cer 7391 Rcnr 7392 1Rc1r 7394 -1Rcm1r 7395 +R cplr 7396 ·R cmr 7397 <R cltr 7398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4334 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-irdg 6446 df-1o 6492 df-2o 6493 df-oadd 6496 df-omul 6497 df-er 6610 df-ec 6612 df-qs 6616 df-ni 7399 df-pli 7400 df-mi 7401 df-lti 7402 df-plpq 7439 df-mpq 7440 df-enq 7442 df-nqqs 7443 df-plqqs 7444 df-mqqs 7445 df-1nqqs 7446 df-rq 7447 df-ltnqqs 7448 df-enq0 7519 df-nq0 7520 df-0nq0 7521 df-plq0 7522 df-mq0 7523 df-inp 7561 df-i1p 7562 df-iplp 7563 df-imp 7564 df-enr 7821 df-nr 7822 df-plr 7823 df-mr 7824 df-ltr 7825 df-1r 7827 df-m1r 7828 |
| This theorem is referenced by: caucvgsrlemoffcau 7893 caucvgsrlemoffgt1 7894 caucvgsrlemoffres 7895 |
| Copyright terms: Public domain | W3C validator |