Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlemofff | GIF version |
Description: Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
Ref | Expression |
---|---|
caucvgsrlemofff | ⊢ (𝜑 → 𝐺:N⟶R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | 1 | ffvelrnda 5631 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐹‘𝑎) ∈ R) |
3 | 1sr 7713 | . . . 4 ⊢ 1R ∈ R | |
4 | addclsr 7715 | . . . 4 ⊢ (((𝐹‘𝑎) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑎) +R 1R) ∈ R) | |
5 | 2, 3, 4 | sylancl 411 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → ((𝐹‘𝑎) +R 1R) ∈ R) |
6 | caucvgsrlembnd.bnd | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
7 | 6 | caucvgsrlemasr 7752 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ R) |
8 | 7 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → 𝐴 ∈ R) |
9 | m1r 7714 | . . . 4 ⊢ -1R ∈ R | |
10 | mulclsr 7716 | . . . 4 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
11 | 8, 9, 10 | sylancl 411 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐴 ·R -1R) ∈ R) |
12 | addclsr 7715 | . . 3 ⊢ ((((𝐹‘𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
13 | 5, 11, 12 | syl2anc 409 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
14 | caucvgsrlembnd.offset | . 2 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
15 | 13, 14 | fmptd 5650 | 1 ⊢ (𝜑 → 𝐺:N⟶R) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 〈cop 3586 class class class wbr 3989 ↦ cmpt 4050 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 1oc1o 6388 [cec 6511 Ncnpi 7234 <N clti 7237 ~Q ceq 7241 *Qcrq 7246 <Q cltq 7247 1Pc1p 7254 +P cpp 7255 ~R cer 7258 Rcnr 7259 1Rc1r 7261 -1Rcm1r 7262 +R cplr 7263 ·R cmr 7264 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-imp 7431 df-enr 7688 df-nr 7689 df-plr 7690 df-mr 7691 df-ltr 7692 df-1r 7694 df-m1r 7695 |
This theorem is referenced by: caucvgsrlemoffcau 7760 caucvgsrlemoffgt1 7761 caucvgsrlemoffres 7762 |
Copyright terms: Public domain | W3C validator |