ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff GIF version

Theorem caucvgsrlemofff 7980
Description: Lemma for caucvgsr 7985. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemofff (𝜑𝐺:NR)
Distinct variable groups:   𝐴,𝑚   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑎,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5 (𝜑𝐹:NR)
21ffvelcdmda 5769 . . . 4 ((𝜑𝑎N) → (𝐹𝑎) ∈ R)
3 1sr 7934 . . . 4 1RR
4 addclsr 7936 . . . 4 (((𝐹𝑎) ∈ R ∧ 1RR) → ((𝐹𝑎) +R 1R) ∈ R)
52, 3, 4sylancl 413 . . 3 ((𝜑𝑎N) → ((𝐹𝑎) +R 1R) ∈ R)
6 caucvgsrlembnd.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
76caucvgsrlemasr 7973 . . . . 5 (𝜑𝐴R)
87adantr 276 . . . 4 ((𝜑𝑎N) → 𝐴R)
9 m1r 7935 . . . 4 -1RR
10 mulclsr 7937 . . . 4 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
118, 9, 10sylancl 413 . . 3 ((𝜑𝑎N) → (𝐴 ·R -1R) ∈ R)
12 addclsr 7936 . . 3 ((((𝐹𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
135, 11, 12syl2anc 411 . 2 ((𝜑𝑎N) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
14 caucvgsrlembnd.offset . 2 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
1513, 14fmptd 5788 1 (𝜑𝐺:NR)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  cop 3669   class class class wbr 4082  cmpt 4144  wf 5313  cfv 5317  (class class class)co 6000  1oc1o 6553  [cec 6676  Ncnpi 7455   <N clti 7458   ~Q ceq 7462  *Qcrq 7467   <Q cltq 7468  1Pc1p 7475   +P cpp 7476   ~R cer 7479  Rcnr 7480  1Rc1r 7482  -1Rcm1r 7483   +R cplr 7484   ·R cmr 7485   <R cltr 7486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4379  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-1o 6560  df-2o 6561  df-oadd 6564  df-omul 6565  df-er 6678  df-ec 6680  df-qs 6684  df-ni 7487  df-pli 7488  df-mi 7489  df-lti 7490  df-plpq 7527  df-mpq 7528  df-enq 7530  df-nqqs 7531  df-plqqs 7532  df-mqqs 7533  df-1nqqs 7534  df-rq 7535  df-ltnqqs 7536  df-enq0 7607  df-nq0 7608  df-0nq0 7609  df-plq0 7610  df-mq0 7611  df-inp 7649  df-i1p 7650  df-iplp 7651  df-imp 7652  df-enr 7909  df-nr 7910  df-plr 7911  df-mr 7912  df-ltr 7913  df-1r 7915  df-m1r 7916
This theorem is referenced by:  caucvgsrlemoffcau  7981  caucvgsrlemoffgt1  7982  caucvgsrlemoffres  7983
  Copyright terms: Public domain W3C validator