ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff GIF version

Theorem caucvgsrlemofff 7892
Description: Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemofff (𝜑𝐺:NR)
Distinct variable groups:   𝐴,𝑚   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑎,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5 (𝜑𝐹:NR)
21ffvelcdmda 5709 . . . 4 ((𝜑𝑎N) → (𝐹𝑎) ∈ R)
3 1sr 7846 . . . 4 1RR
4 addclsr 7848 . . . 4 (((𝐹𝑎) ∈ R ∧ 1RR) → ((𝐹𝑎) +R 1R) ∈ R)
52, 3, 4sylancl 413 . . 3 ((𝜑𝑎N) → ((𝐹𝑎) +R 1R) ∈ R)
6 caucvgsrlembnd.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
76caucvgsrlemasr 7885 . . . . 5 (𝜑𝐴R)
87adantr 276 . . . 4 ((𝜑𝑎N) → 𝐴R)
9 m1r 7847 . . . 4 -1RR
10 mulclsr 7849 . . . 4 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
118, 9, 10sylancl 413 . . 3 ((𝜑𝑎N) → (𝐴 ·R -1R) ∈ R)
12 addclsr 7848 . . 3 ((((𝐹𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
135, 11, 12syl2anc 411 . 2 ((𝜑𝑎N) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
14 caucvgsrlembnd.offset . 2 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
1513, 14fmptd 5728 1 (𝜑𝐺:NR)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483  cop 3635   class class class wbr 4043  cmpt 4104  wf 5264  cfv 5268  (class class class)co 5934  1oc1o 6485  [cec 6608  Ncnpi 7367   <N clti 7370   ~Q ceq 7374  *Qcrq 7379   <Q cltq 7380  1Pc1p 7387   +P cpp 7388   ~R cer 7391  Rcnr 7392  1Rc1r 7394  -1Rcm1r 7395   +R cplr 7396   ·R cmr 7397   <R cltr 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-i1p 7562  df-iplp 7563  df-imp 7564  df-enr 7821  df-nr 7822  df-plr 7823  df-mr 7824  df-ltr 7825  df-1r 7827  df-m1r 7828
This theorem is referenced by:  caucvgsrlemoffcau  7893  caucvgsrlemoffgt1  7894  caucvgsrlemoffres  7895
  Copyright terms: Public domain W3C validator