| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemofff | GIF version | ||
| Description: Lemma for caucvgsr 7914. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemofff | ⊢ (𝜑 → 𝐺:N⟶R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsr.f | . . . . 5 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 2 | 1 | ffvelcdmda 5714 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐹‘𝑎) ∈ R) |
| 3 | 1sr 7863 | . . . 4 ⊢ 1R ∈ R | |
| 4 | addclsr 7865 | . . . 4 ⊢ (((𝐹‘𝑎) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝑎) +R 1R) ∈ R) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → ((𝐹‘𝑎) +R 1R) ∈ R) |
| 6 | caucvgsrlembnd.bnd | . . . . . 6 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 7 | 6 | caucvgsrlemasr 7902 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ R) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → 𝐴 ∈ R) |
| 9 | m1r 7864 | . . . 4 ⊢ -1R ∈ R | |
| 10 | mulclsr 7866 | . . . 4 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 11 | 8, 9, 10 | sylancl 413 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (𝐴 ·R -1R) ∈ R) |
| 12 | addclsr 7865 | . . 3 ⊢ ((((𝐹‘𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
| 13 | 5, 11, 12 | syl2anc 411 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ N) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
| 14 | caucvgsrlembnd.offset | . 2 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 15 | 13, 14 | fmptd 5733 | 1 ⊢ (𝜑 → 𝐺:N⟶R) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 〈cop 3635 class class class wbr 4043 ↦ cmpt 4104 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 1oc1o 6494 [cec 6617 Ncnpi 7384 <N clti 7387 ~Q ceq 7391 *Qcrq 7396 <Q cltq 7397 1Pc1p 7404 +P cpp 7405 ~R cer 7408 Rcnr 7409 1Rc1r 7411 -1Rcm1r 7412 +R cplr 7413 ·R cmr 7414 <R cltr 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-2o 6502 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-enq0 7536 df-nq0 7537 df-0nq0 7538 df-plq0 7539 df-mq0 7540 df-inp 7578 df-i1p 7579 df-iplp 7580 df-imp 7581 df-enr 7838 df-nr 7839 df-plr 7840 df-mr 7841 df-ltr 7842 df-1r 7844 df-m1r 7845 |
| This theorem is referenced by: caucvgsrlemoffcau 7910 caucvgsrlemoffgt1 7911 caucvgsrlemoffres 7912 |
| Copyright terms: Public domain | W3C validator |