ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff GIF version

Theorem caucvgsrlemofff 7909
Description: Lemma for caucvgsr 7914. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemofff (𝜑𝐺:NR)
Distinct variable groups:   𝐴,𝑚   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑎,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5 (𝜑𝐹:NR)
21ffvelcdmda 5714 . . . 4 ((𝜑𝑎N) → (𝐹𝑎) ∈ R)
3 1sr 7863 . . . 4 1RR
4 addclsr 7865 . . . 4 (((𝐹𝑎) ∈ R ∧ 1RR) → ((𝐹𝑎) +R 1R) ∈ R)
52, 3, 4sylancl 413 . . 3 ((𝜑𝑎N) → ((𝐹𝑎) +R 1R) ∈ R)
6 caucvgsrlembnd.bnd . . . . . 6 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
76caucvgsrlemasr 7902 . . . . 5 (𝜑𝐴R)
87adantr 276 . . . 4 ((𝜑𝑎N) → 𝐴R)
9 m1r 7864 . . . 4 -1RR
10 mulclsr 7866 . . . 4 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
118, 9, 10sylancl 413 . . 3 ((𝜑𝑎N) → (𝐴 ·R -1R) ∈ R)
12 addclsr 7865 . . 3 ((((𝐹𝑎) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
135, 11, 12syl2anc 411 . 2 ((𝜑𝑎N) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
14 caucvgsrlembnd.offset . 2 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
1513, 14fmptd 5733 1 (𝜑𝐺:NR)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483  cop 3635   class class class wbr 4043  cmpt 4104  wf 5266  cfv 5270  (class class class)co 5943  1oc1o 6494  [cec 6617  Ncnpi 7384   <N clti 7387   ~Q ceq 7391  *Qcrq 7396   <Q cltq 7397  1Pc1p 7404   +P cpp 7405   ~R cer 7408  Rcnr 7409  1Rc1r 7411  -1Rcm1r 7412   +R cplr 7413   ·R cmr 7414   <R cltr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-2o 6502  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-enq0 7536  df-nq0 7537  df-0nq0 7538  df-plq0 7539  df-mq0 7540  df-inp 7578  df-i1p 7579  df-iplp 7580  df-imp 7581  df-enr 7838  df-nr 7839  df-plr 7840  df-mr 7841  df-ltr 7842  df-1r 7844  df-m1r 7845
This theorem is referenced by:  caucvgsrlemoffcau  7910  caucvgsrlemoffgt1  7911  caucvgsrlemoffres  7912
  Copyright terms: Public domain W3C validator