| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffgt1 | GIF version | ||
| Description: Lemma for caucvgsr 7950. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemoffgt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlembnd.bnd | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | 1 | r19.21bi 2596 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 <R (𝐹‘𝑚)) |
| 3 | ltasrg 7918 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 4 | 3 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
| 5 | 1 | caucvgsrlemasr 7938 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ R) |
| 6 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 ∈ R) |
| 7 | caucvgsr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 8 | 7 | ffvelcdmda 5738 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
| 9 | 1sr 7899 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 10 | 9 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
| 11 | addcomsrg 7903 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 12 | 11 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
| 13 | 4, 6, 8, 10, 12 | caovord2d 6139 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 <R (𝐹‘𝑚) ↔ (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R))) |
| 14 | 2, 13 | mpbid 147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R)) |
| 15 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 16 | caucvgsrlembnd.offset | . . . . . 6 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 17 | 7, 15, 1, 16 | caucvgsrlemoffval 7944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = ((𝐹‘𝑚) +R 1R)) |
| 18 | 14, 17 | breqtrrd 4087 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐺‘𝑚) +R 𝐴)) |
| 19 | 7, 15, 1, 16 | caucvgsrlemofff 7945 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶R) |
| 20 | 19 | ffvelcdmda 5738 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐺‘𝑚) ∈ R) |
| 21 | addcomsrg 7903 | . . . . 5 ⊢ (((𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) | |
| 22 | 20, 6, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) |
| 23 | 18, 22 | breqtrd 4085 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚))) |
| 24 | ltasrg 7918 | . . . 4 ⊢ ((1R ∈ R ∧ (𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) | |
| 25 | 10, 20, 6, 24 | syl3anc 1250 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) |
| 26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R <R (𝐺‘𝑚)) |
| 27 | 26 | ralrimiva 2581 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 {cab 2193 ∀wral 2486 〈cop 3646 class class class wbr 4059 ↦ cmpt 4121 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 1oc1o 6518 [cec 6641 Ncnpi 7420 <N clti 7423 ~Q ceq 7427 *Qcrq 7432 <Q cltq 7433 1Pc1p 7440 +P cpp 7441 ~R cer 7444 Rcnr 7445 1Rc1r 7447 -1Rcm1r 7448 +R cplr 7449 ·R cmr 7450 <R cltr 7451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-ltr 7878 df-0r 7879 df-1r 7880 df-m1r 7881 |
| This theorem is referenced by: caucvgsrlemoffres 7948 |
| Copyright terms: Public domain | W3C validator |