ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffgt1 GIF version

Theorem caucvgsrlemoffgt1 7912
Description: Lemma for caucvgsr 7915. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffgt1 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
Distinct variable groups:   𝐴,𝑎,𝑚   𝐹,𝑎   𝜑,𝑎,𝑚
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemoffgt1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsrlembnd.bnd . . . . . . 7 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
21r19.21bi 2594 . . . . . 6 ((𝜑𝑚N) → 𝐴 <R (𝐹𝑚))
3 ltasrg 7883 . . . . . . . 8 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
43adantl 277 . . . . . . 7 (((𝜑𝑚N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
51caucvgsrlemasr 7903 . . . . . . . 8 (𝜑𝐴R)
65adantr 276 . . . . . . 7 ((𝜑𝑚N) → 𝐴R)
7 caucvgsr.f . . . . . . . 8 (𝜑𝐹:NR)
87ffvelcdmda 5715 . . . . . . 7 ((𝜑𝑚N) → (𝐹𝑚) ∈ R)
9 1sr 7864 . . . . . . . 8 1RR
109a1i 9 . . . . . . 7 ((𝜑𝑚N) → 1RR)
11 addcomsrg 7868 . . . . . . . 8 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
1211adantl 277 . . . . . . 7 (((𝜑𝑚N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
134, 6, 8, 10, 12caovord2d 6116 . . . . . 6 ((𝜑𝑚N) → (𝐴 <R (𝐹𝑚) ↔ (𝐴 +R 1R) <R ((𝐹𝑚) +R 1R)))
142, 13mpbid 147 . . . . 5 ((𝜑𝑚N) → (𝐴 +R 1R) <R ((𝐹𝑚) +R 1R))
15 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
16 caucvgsrlembnd.offset . . . . . 6 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
177, 15, 1, 16caucvgsrlemoffval 7909 . . . . 5 ((𝜑𝑚N) → ((𝐺𝑚) +R 𝐴) = ((𝐹𝑚) +R 1R))
1814, 17breqtrrd 4072 . . . 4 ((𝜑𝑚N) → (𝐴 +R 1R) <R ((𝐺𝑚) +R 𝐴))
197, 15, 1, 16caucvgsrlemofff 7910 . . . . . 6 (𝜑𝐺:NR)
2019ffvelcdmda 5715 . . . . 5 ((𝜑𝑚N) → (𝐺𝑚) ∈ R)
21 addcomsrg 7868 . . . . 5 (((𝐺𝑚) ∈ R𝐴R) → ((𝐺𝑚) +R 𝐴) = (𝐴 +R (𝐺𝑚)))
2220, 6, 21syl2anc 411 . . . 4 ((𝜑𝑚N) → ((𝐺𝑚) +R 𝐴) = (𝐴 +R (𝐺𝑚)))
2318, 22breqtrd 4070 . . 3 ((𝜑𝑚N) → (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚)))
24 ltasrg 7883 . . . 4 ((1RR ∧ (𝐺𝑚) ∈ R𝐴R) → (1R <R (𝐺𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚))))
2510, 20, 6, 24syl3anc 1250 . . 3 ((𝜑𝑚N) → (1R <R (𝐺𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚))))
2623, 25mpbird 167 . 2 ((𝜑𝑚N) → 1R <R (𝐺𝑚))
2726ralrimiva 2579 1 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  {cab 2191  wral 2484  cop 3636   class class class wbr 4044  cmpt 4105  wf 5267  cfv 5271  (class class class)co 5944  1oc1o 6495  [cec 6618  Ncnpi 7385   <N clti 7388   ~Q ceq 7392  *Qcrq 7397   <Q cltq 7398  1Pc1p 7405   +P cpp 7406   ~R cer 7409  Rcnr 7410  1Rc1r 7412  -1Rcm1r 7413   +R cplr 7414   ·R cmr 7415   <R cltr 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-iltp 7583  df-enr 7839  df-nr 7840  df-plr 7841  df-mr 7842  df-ltr 7843  df-0r 7844  df-1r 7845  df-m1r 7846
This theorem is referenced by:  caucvgsrlemoffres  7913
  Copyright terms: Public domain W3C validator