Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffgt1 | GIF version |
Description: Lemma for caucvgsr 7743. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
Ref | Expression |
---|---|
caucvgsrlemoffgt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlembnd.bnd | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
2 | 1 | r19.21bi 2554 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 <R (𝐹‘𝑚)) |
3 | ltasrg 7711 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
4 | 3 | adantl 275 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
5 | 1 | caucvgsrlemasr 7731 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ R) |
6 | 5 | adantr 274 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 ∈ R) |
7 | caucvgsr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:N⟶R) | |
8 | 7 | ffvelrnda 5620 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
9 | 1sr 7692 | . . . . . . . 8 ⊢ 1R ∈ R | |
10 | 9 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
11 | addcomsrg 7696 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
12 | 11 | adantl 275 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
13 | 4, 6, 8, 10, 12 | caovord2d 6011 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 <R (𝐹‘𝑚) ↔ (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R))) |
14 | 2, 13 | mpbid 146 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R)) |
15 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
16 | caucvgsrlembnd.offset | . . . . . 6 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
17 | 7, 15, 1, 16 | caucvgsrlemoffval 7737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = ((𝐹‘𝑚) +R 1R)) |
18 | 14, 17 | breqtrrd 4010 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐺‘𝑚) +R 𝐴)) |
19 | 7, 15, 1, 16 | caucvgsrlemofff 7738 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶R) |
20 | 19 | ffvelrnda 5620 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐺‘𝑚) ∈ R) |
21 | addcomsrg 7696 | . . . . 5 ⊢ (((𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) | |
22 | 20, 6, 21 | syl2anc 409 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) |
23 | 18, 22 | breqtrd 4008 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚))) |
24 | ltasrg 7711 | . . . 4 ⊢ ((1R ∈ R ∧ (𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) | |
25 | 10, 20, 6, 24 | syl3anc 1228 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) |
26 | 23, 25 | mpbird 166 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R <R (𝐺‘𝑚)) |
27 | 26 | ralrimiva 2539 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 {cab 2151 ∀wral 2444 〈cop 3579 class class class wbr 3982 ↦ cmpt 4043 ⟶wf 5184 ‘cfv 5188 (class class class)co 5842 1oc1o 6377 [cec 6499 Ncnpi 7213 <N clti 7216 ~Q ceq 7220 *Qcrq 7225 <Q cltq 7226 1Pc1p 7233 +P cpp 7234 ~R cer 7237 Rcnr 7238 1Rc1r 7240 -1Rcm1r 7241 +R cplr 7242 ·R cmr 7243 <R cltr 7244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-iltp 7411 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-ltr 7671 df-0r 7672 df-1r 7673 df-m1r 7674 |
This theorem is referenced by: caucvgsrlemoffres 7741 |
Copyright terms: Public domain | W3C validator |