| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffgt1 | GIF version | ||
| Description: Lemma for caucvgsr 7915. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemoffgt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlembnd.bnd | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 2 | 1 | r19.21bi 2594 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 <R (𝐹‘𝑚)) |
| 3 | ltasrg 7883 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) | |
| 4 | 3 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R ∧ ℎ ∈ R)) → (𝑓 <R 𝑔 ↔ (ℎ +R 𝑓) <R (ℎ +R 𝑔))) |
| 5 | 1 | caucvgsrlemasr 7903 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ R) |
| 6 | 5 | adantr 276 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 𝐴 ∈ R) |
| 7 | caucvgsr.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 8 | 7 | ffvelcdmda 5715 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐹‘𝑚) ∈ R) |
| 9 | 1sr 7864 | . . . . . . . 8 ⊢ 1R ∈ R | |
| 10 | 9 | a1i 9 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R ∈ R) |
| 11 | addcomsrg 7868 | . . . . . . . 8 ⊢ ((𝑓 ∈ R ∧ 𝑔 ∈ R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) | |
| 12 | 11 | adantl 277 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑚 ∈ N) ∧ (𝑓 ∈ R ∧ 𝑔 ∈ R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓)) |
| 13 | 4, 6, 8, 10, 12 | caovord2d 6116 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 <R (𝐹‘𝑚) ↔ (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R))) |
| 14 | 2, 13 | mpbid 147 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐹‘𝑚) +R 1R)) |
| 15 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 16 | caucvgsrlembnd.offset | . . . . . 6 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 17 | 7, 15, 1, 16 | caucvgsrlemoffval 7909 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = ((𝐹‘𝑚) +R 1R)) |
| 18 | 14, 17 | breqtrrd 4072 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R ((𝐺‘𝑚) +R 𝐴)) |
| 19 | 7, 15, 1, 16 | caucvgsrlemofff 7910 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶R) |
| 20 | 19 | ffvelcdmda 5715 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐺‘𝑚) ∈ R) |
| 21 | addcomsrg 7868 | . . . . 5 ⊢ (((𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) | |
| 22 | 20, 6, 21 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → ((𝐺‘𝑚) +R 𝐴) = (𝐴 +R (𝐺‘𝑚))) |
| 23 | 18, 22 | breqtrd 4070 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚))) |
| 24 | ltasrg 7883 | . . . 4 ⊢ ((1R ∈ R ∧ (𝐺‘𝑚) ∈ R ∧ 𝐴 ∈ R) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) | |
| 25 | 10, 20, 6, 24 | syl3anc 1250 | . . 3 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → (1R <R (𝐺‘𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺‘𝑚)))) |
| 26 | 23, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝑚 ∈ N) → 1R <R (𝐺‘𝑚)) |
| 27 | 26 | ralrimiva 2579 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐺‘𝑚)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 {cab 2191 ∀wral 2484 〈cop 3636 class class class wbr 4044 ↦ cmpt 4105 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 1oc1o 6495 [cec 6618 Ncnpi 7385 <N clti 7388 ~Q ceq 7392 *Qcrq 7397 <Q cltq 7398 1Pc1p 7405 +P cpp 7406 ~R cer 7409 Rcnr 7410 1Rc1r 7412 -1Rcm1r 7413 +R cplr 7414 ·R cmr 7415 <R cltr 7416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-imp 7582 df-iltp 7583 df-enr 7839 df-nr 7840 df-plr 7841 df-mr 7842 df-ltr 7843 df-0r 7844 df-1r 7845 df-m1r 7846 |
| This theorem is referenced by: caucvgsrlemoffres 7913 |
| Copyright terms: Public domain | W3C validator |