ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffgt1 GIF version

Theorem caucvgsrlemoffgt1 7494
Description: Lemma for caucvgsr 7497. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffgt1 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
Distinct variable groups:   𝐴,𝑎,𝑚   𝐹,𝑎   𝜑,𝑎,𝑚
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)

Proof of Theorem caucvgsrlemoffgt1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsrlembnd.bnd . . . . . . 7 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
21r19.21bi 2479 . . . . . 6 ((𝜑𝑚N) → 𝐴 <R (𝐹𝑚))
3 ltasrg 7466 . . . . . . . 8 ((𝑓R𝑔RR) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
43adantl 273 . . . . . . 7 (((𝜑𝑚N) ∧ (𝑓R𝑔RR)) → (𝑓 <R 𝑔 ↔ ( +R 𝑓) <R ( +R 𝑔)))
51caucvgsrlemasr 7485 . . . . . . . 8 (𝜑𝐴R)
65adantr 272 . . . . . . 7 ((𝜑𝑚N) → 𝐴R)
7 caucvgsr.f . . . . . . . 8 (𝜑𝐹:NR)
87ffvelrnda 5487 . . . . . . 7 ((𝜑𝑚N) → (𝐹𝑚) ∈ R)
9 1sr 7447 . . . . . . . 8 1RR
109a1i 9 . . . . . . 7 ((𝜑𝑚N) → 1RR)
11 addcomsrg 7451 . . . . . . . 8 ((𝑓R𝑔R) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
1211adantl 273 . . . . . . 7 (((𝜑𝑚N) ∧ (𝑓R𝑔R)) → (𝑓 +R 𝑔) = (𝑔 +R 𝑓))
134, 6, 8, 10, 12caovord2d 5872 . . . . . 6 ((𝜑𝑚N) → (𝐴 <R (𝐹𝑚) ↔ (𝐴 +R 1R) <R ((𝐹𝑚) +R 1R)))
142, 13mpbid 146 . . . . 5 ((𝜑𝑚N) → (𝐴 +R 1R) <R ((𝐹𝑚) +R 1R))
15 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
16 caucvgsrlembnd.offset . . . . . 6 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
177, 15, 1, 16caucvgsrlemoffval 7491 . . . . 5 ((𝜑𝑚N) → ((𝐺𝑚) +R 𝐴) = ((𝐹𝑚) +R 1R))
1814, 17breqtrrd 3901 . . . 4 ((𝜑𝑚N) → (𝐴 +R 1R) <R ((𝐺𝑚) +R 𝐴))
197, 15, 1, 16caucvgsrlemofff 7492 . . . . . 6 (𝜑𝐺:NR)
2019ffvelrnda 5487 . . . . 5 ((𝜑𝑚N) → (𝐺𝑚) ∈ R)
21 addcomsrg 7451 . . . . 5 (((𝐺𝑚) ∈ R𝐴R) → ((𝐺𝑚) +R 𝐴) = (𝐴 +R (𝐺𝑚)))
2220, 6, 21syl2anc 406 . . . 4 ((𝜑𝑚N) → ((𝐺𝑚) +R 𝐴) = (𝐴 +R (𝐺𝑚)))
2318, 22breqtrd 3899 . . 3 ((𝜑𝑚N) → (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚)))
24 ltasrg 7466 . . . 4 ((1RR ∧ (𝐺𝑚) ∈ R𝐴R) → (1R <R (𝐺𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚))))
2510, 20, 6, 24syl3anc 1184 . . 3 ((𝜑𝑚N) → (1R <R (𝐺𝑚) ↔ (𝐴 +R 1R) <R (𝐴 +R (𝐺𝑚))))
2623, 25mpbird 166 . 2 ((𝜑𝑚N) → 1R <R (𝐺𝑚))
2726ralrimiva 2464 1 (𝜑 → ∀𝑚N 1R <R (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 930   = wceq 1299  wcel 1448  {cab 2086  wral 2375  cop 3477   class class class wbr 3875  cmpt 3929  wf 5055  cfv 5059  (class class class)co 5706  1oc1o 6236  [cec 6357  Ncnpi 6981   <N clti 6984   ~Q ceq 6988  *Qcrq 6993   <Q cltq 6994  1Pc1p 7001   +P cpp 7002   ~R cer 7005  Rcnr 7006  1Rc1r 7008  -1Rcm1r 7009   +R cplr 7010   ·R cmr 7011   <R cltr 7012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-2o 6244  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-enq0 7133  df-nq0 7134  df-0nq0 7135  df-plq0 7136  df-mq0 7137  df-inp 7175  df-i1p 7176  df-iplp 7177  df-imp 7178  df-iltp 7179  df-enr 7422  df-nr 7423  df-plr 7424  df-mr 7425  df-ltr 7426  df-0r 7427  df-1r 7428  df-m1r 7429
This theorem is referenced by:  caucvgsrlemoffres  7495
  Copyright terms: Public domain W3C validator