| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffval | GIF version | ||
| Description: Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemoffval | ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlembnd.offset | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)))) |
| 3 | fveq2 5561 | . . . . . . 7 ⊢ (𝑎 = 𝐽 → (𝐹‘𝑎) = (𝐹‘𝐽)) | |
| 4 | 3 | oveq1d 5940 | . . . . . 6 ⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) +R 1R) = ((𝐹‘𝐽) +R 1R)) |
| 5 | 4 | oveq1d 5940 | . . . . 5 ⊢ (𝑎 = 𝐽 → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 6 | 5 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝐽 ∈ N) ∧ 𝑎 = 𝐽) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 7 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐽 ∈ N) | |
| 8 | caucvgsr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 9 | 8 | ffvelcdmda 5700 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘𝐽) ∈ R) |
| 10 | 1sr 7835 | . . . . . 6 ⊢ 1R ∈ R | |
| 11 | addclsr 7837 | . . . . . 6 ⊢ (((𝐹‘𝐽) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝐽) +R 1R) ∈ R) | |
| 12 | 9, 10, 11 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐹‘𝐽) +R 1R) ∈ R) |
| 13 | caucvgsrlembnd.bnd | . . . . . . . 8 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 14 | 13 | caucvgsrlemasr 7874 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ R) |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐴 ∈ R) |
| 16 | m1r 7836 | . . . . . 6 ⊢ -1R ∈ R | |
| 17 | mulclsr 7838 | . . . . . 6 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 18 | 15, 16, 17 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 ·R -1R) ∈ R) |
| 19 | addclsr 7837 | . . . . 5 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
| 20 | 12, 18, 19 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
| 21 | 2, 6, 7, 20 | fvmptd 5645 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐺‘𝐽) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 22 | 21 | oveq1d 5940 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴)) |
| 23 | addasssrg 7840 | . . 3 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) | |
| 24 | 12, 18, 15, 23 | syl3anc 1249 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) |
| 25 | addcomsrg 7839 | . . . . . 6 ⊢ (((𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) | |
| 26 | 18, 15, 25 | syl2anc 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) |
| 27 | pn0sr 7855 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
| 28 | 15, 27 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| 29 | 26, 28 | eqtrd 2229 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = 0R) |
| 30 | 29 | oveq2d 5941 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹‘𝐽) +R 1R) +R 0R)) |
| 31 | 0idsr 7851 | . . . 4 ⊢ (((𝐹‘𝐽) +R 1R) ∈ R → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) | |
| 32 | 12, 31 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) |
| 33 | 30, 32 | eqtrd 2229 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹‘𝐽) +R 1R)) |
| 34 | 22, 24, 33 | 3eqtrd 2233 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 〈cop 3626 class class class wbr 4034 ↦ cmpt 4095 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 1oc1o 6476 [cec 6599 Ncnpi 7356 <N clti 7359 ~Q ceq 7363 *Qcrq 7368 <Q cltq 7369 1Pc1p 7376 +P cpp 7377 ~R cer 7380 Rcnr 7381 0Rc0r 7382 1Rc1r 7383 -1Rcm1r 7384 +R cplr 7385 ·R cmr 7386 <R cltr 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-2o 6484 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-enq0 7508 df-nq0 7509 df-0nq0 7510 df-plq0 7511 df-mq0 7512 df-inp 7550 df-i1p 7551 df-iplp 7552 df-imp 7553 df-enr 7810 df-nr 7811 df-plr 7812 df-mr 7813 df-ltr 7814 df-0r 7815 df-1r 7816 df-m1r 7817 |
| This theorem is referenced by: caucvgsrlemoffcau 7882 caucvgsrlemoffgt1 7883 caucvgsrlemoffres 7884 |
| Copyright terms: Public domain | W3C validator |