| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffval | GIF version | ||
| Description: Lemma for caucvgsr 7928. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
| caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
| Ref | Expression |
|---|---|
| caucvgsrlemoffval | ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlembnd.offset | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
| 2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)))) |
| 3 | fveq2 5586 | . . . . . . 7 ⊢ (𝑎 = 𝐽 → (𝐹‘𝑎) = (𝐹‘𝐽)) | |
| 4 | 3 | oveq1d 5969 | . . . . . 6 ⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) +R 1R) = ((𝐹‘𝐽) +R 1R)) |
| 5 | 4 | oveq1d 5969 | . . . . 5 ⊢ (𝑎 = 𝐽 → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 6 | 5 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝐽 ∈ N) ∧ 𝑎 = 𝐽) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 7 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐽 ∈ N) | |
| 8 | caucvgsr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 9 | 8 | ffvelcdmda 5725 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘𝐽) ∈ R) |
| 10 | 1sr 7877 | . . . . . 6 ⊢ 1R ∈ R | |
| 11 | addclsr 7879 | . . . . . 6 ⊢ (((𝐹‘𝐽) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝐽) +R 1R) ∈ R) | |
| 12 | 9, 10, 11 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐹‘𝐽) +R 1R) ∈ R) |
| 13 | caucvgsrlembnd.bnd | . . . . . . . 8 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
| 14 | 13 | caucvgsrlemasr 7916 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ R) |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐴 ∈ R) |
| 16 | m1r 7878 | . . . . . 6 ⊢ -1R ∈ R | |
| 17 | mulclsr 7880 | . . . . . 6 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
| 18 | 15, 16, 17 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 ·R -1R) ∈ R) |
| 19 | addclsr 7879 | . . . . 5 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
| 20 | 12, 18, 19 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
| 21 | 2, 6, 7, 20 | fvmptd 5670 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐺‘𝐽) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
| 22 | 21 | oveq1d 5969 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴)) |
| 23 | addasssrg 7882 | . . 3 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) | |
| 24 | 12, 18, 15, 23 | syl3anc 1250 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) |
| 25 | addcomsrg 7881 | . . . . . 6 ⊢ (((𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) | |
| 26 | 18, 15, 25 | syl2anc 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) |
| 27 | pn0sr 7897 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
| 28 | 15, 27 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| 29 | 26, 28 | eqtrd 2239 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = 0R) |
| 30 | 29 | oveq2d 5970 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹‘𝐽) +R 1R) +R 0R)) |
| 31 | 0idsr 7893 | . . . 4 ⊢ (((𝐹‘𝐽) +R 1R) ∈ R → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) | |
| 32 | 12, 31 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) |
| 33 | 30, 32 | eqtrd 2239 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹‘𝐽) +R 1R)) |
| 34 | 22, 24, 33 | 3eqtrd 2243 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 ∀wral 2485 〈cop 3638 class class class wbr 4048 ↦ cmpt 4110 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 1oc1o 6505 [cec 6628 Ncnpi 7398 <N clti 7401 ~Q ceq 7405 *Qcrq 7410 <Q cltq 7411 1Pc1p 7418 +P cpp 7419 ~R cer 7422 Rcnr 7423 0Rc0r 7424 1Rc1r 7425 -1Rcm1r 7426 +R cplr 7427 ·R cmr 7428 <R cltr 7429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-i1p 7593 df-iplp 7594 df-imp 7595 df-enr 7852 df-nr 7853 df-plr 7854 df-mr 7855 df-ltr 7856 df-0r 7857 df-1r 7858 df-m1r 7859 |
| This theorem is referenced by: caucvgsrlemoffcau 7924 caucvgsrlemoffgt1 7925 caucvgsrlemoffres 7926 |
| Copyright terms: Public domain | W3C validator |