![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffval | GIF version |
Description: Lemma for caucvgsr 7832. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
Ref | Expression |
---|---|
caucvgsrlemoffval | ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlembnd.offset | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)))) |
3 | fveq2 5534 | . . . . . . 7 ⊢ (𝑎 = 𝐽 → (𝐹‘𝑎) = (𝐹‘𝐽)) | |
4 | 3 | oveq1d 5912 | . . . . . 6 ⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) +R 1R) = ((𝐹‘𝐽) +R 1R)) |
5 | 4 | oveq1d 5912 | . . . . 5 ⊢ (𝑎 = 𝐽 → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
6 | 5 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝐽 ∈ N) ∧ 𝑎 = 𝐽) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
7 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐽 ∈ N) | |
8 | caucvgsr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:N⟶R) | |
9 | 8 | ffvelcdmda 5672 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘𝐽) ∈ R) |
10 | 1sr 7781 | . . . . . 6 ⊢ 1R ∈ R | |
11 | addclsr 7783 | . . . . . 6 ⊢ (((𝐹‘𝐽) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝐽) +R 1R) ∈ R) | |
12 | 9, 10, 11 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐹‘𝐽) +R 1R) ∈ R) |
13 | caucvgsrlembnd.bnd | . . . . . . . 8 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
14 | 13 | caucvgsrlemasr 7820 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ R) |
15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐴 ∈ R) |
16 | m1r 7782 | . . . . . 6 ⊢ -1R ∈ R | |
17 | mulclsr 7784 | . . . . . 6 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
18 | 15, 16, 17 | sylancl 413 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 ·R -1R) ∈ R) |
19 | addclsr 7783 | . . . . 5 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
20 | 12, 18, 19 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
21 | 2, 6, 7, 20 | fvmptd 5618 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐺‘𝐽) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
22 | 21 | oveq1d 5912 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴)) |
23 | addasssrg 7786 | . . 3 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) | |
24 | 12, 18, 15, 23 | syl3anc 1249 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) |
25 | addcomsrg 7785 | . . . . . 6 ⊢ (((𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) | |
26 | 18, 15, 25 | syl2anc 411 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) |
27 | pn0sr 7801 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
28 | 15, 27 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
29 | 26, 28 | eqtrd 2222 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = 0R) |
30 | 29 | oveq2d 5913 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹‘𝐽) +R 1R) +R 0R)) |
31 | 0idsr 7797 | . . . 4 ⊢ (((𝐹‘𝐽) +R 1R) ∈ R → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) | |
32 | 12, 31 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) |
33 | 30, 32 | eqtrd 2222 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹‘𝐽) +R 1R)) |
34 | 22, 24, 33 | 3eqtrd 2226 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 〈cop 3610 class class class wbr 4018 ↦ cmpt 4079 ⟶wf 5231 ‘cfv 5235 (class class class)co 5897 1oc1o 6435 [cec 6558 Ncnpi 7302 <N clti 7305 ~Q ceq 7309 *Qcrq 7314 <Q cltq 7315 1Pc1p 7322 +P cpp 7323 ~R cer 7326 Rcnr 7327 0Rc0r 7328 1Rc1r 7329 -1Rcm1r 7330 +R cplr 7331 ·R cmr 7332 <R cltr 7333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-irdg 6396 df-1o 6442 df-2o 6443 df-oadd 6446 df-omul 6447 df-er 6560 df-ec 6562 df-qs 6566 df-ni 7334 df-pli 7335 df-mi 7336 df-lti 7337 df-plpq 7374 df-mpq 7375 df-enq 7377 df-nqqs 7378 df-plqqs 7379 df-mqqs 7380 df-1nqqs 7381 df-rq 7382 df-ltnqqs 7383 df-enq0 7454 df-nq0 7455 df-0nq0 7456 df-plq0 7457 df-mq0 7458 df-inp 7496 df-i1p 7497 df-iplp 7498 df-imp 7499 df-enr 7756 df-nr 7757 df-plr 7758 df-mr 7759 df-ltr 7760 df-0r 7761 df-1r 7762 df-m1r 7763 |
This theorem is referenced by: caucvgsrlemoffcau 7828 caucvgsrlemoffgt1 7829 caucvgsrlemoffres 7830 |
Copyright terms: Public domain | W3C validator |