ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval GIF version

Theorem caucvgsrlemoffval 7758
Description: Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffval ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑚   𝐹,𝑎   𝐽,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐽(𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))))
3 fveq2 5496 . . . . . . 7 (𝑎 = 𝐽 → (𝐹𝑎) = (𝐹𝐽))
43oveq1d 5868 . . . . . 6 (𝑎 = 𝐽 → ((𝐹𝑎) +R 1R) = ((𝐹𝐽) +R 1R))
54oveq1d 5868 . . . . 5 (𝑎 = 𝐽 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
65adantl 275 . . . 4 (((𝜑𝐽N) ∧ 𝑎 = 𝐽) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
7 simpr 109 . . . 4 ((𝜑𝐽N) → 𝐽N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
98ffvelrnda 5631 . . . . . 6 ((𝜑𝐽N) → (𝐹𝐽) ∈ R)
10 1sr 7713 . . . . . 6 1RR
11 addclsr 7715 . . . . . 6 (((𝐹𝐽) ∈ R ∧ 1RR) → ((𝐹𝐽) +R 1R) ∈ R)
129, 10, 11sylancl 411 . . . . 5 ((𝜑𝐽N) → ((𝐹𝐽) +R 1R) ∈ R)
13 caucvgsrlembnd.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
1413caucvgsrlemasr 7752 . . . . . . 7 (𝜑𝐴R)
1514adantr 274 . . . . . 6 ((𝜑𝐽N) → 𝐴R)
16 m1r 7714 . . . . . 6 -1RR
17 mulclsr 7716 . . . . . 6 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
1815, 16, 17sylancl 411 . . . . 5 ((𝜑𝐽N) → (𝐴 ·R -1R) ∈ R)
19 addclsr 7715 . . . . 5 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
2012, 18, 19syl2anc 409 . . . 4 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
212, 6, 7, 20fvmptd 5577 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
2221oveq1d 5868 . 2 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴))
23 addasssrg 7718 . . 3 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R𝐴R) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
2412, 18, 15, 23syl3anc 1233 . 2 ((𝜑𝐽N) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
25 addcomsrg 7717 . . . . . 6 (((𝐴 ·R -1R) ∈ R𝐴R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
2618, 15, 25syl2anc 409 . . . . 5 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
27 pn0sr 7733 . . . . . 6 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2815, 27syl 14 . . . . 5 ((𝜑𝐽N) → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2926, 28eqtrd 2203 . . . 4 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = 0R)
3029oveq2d 5869 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹𝐽) +R 1R) +R 0R))
31 0idsr 7729 . . . 4 (((𝐹𝐽) +R 1R) ∈ R → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3212, 31syl 14 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3330, 32eqtrd 2203 . 2 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹𝐽) +R 1R))
3422, 24, 333eqtrd 2207 1 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  wral 2448  cop 3586   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   <N clti 7237   ~Q ceq 7241  *Qcrq 7246   <Q cltq 7247  1Pc1p 7254   +P cpp 7255   ~R cer 7258  Rcnr 7259  0Rc0r 7260  1Rc1r 7261  -1Rcm1r 7262   +R cplr 7263   ·R cmr 7264   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695
This theorem is referenced by:  caucvgsrlemoffcau  7760  caucvgsrlemoffgt1  7761  caucvgsrlemoffres  7762
  Copyright terms: Public domain W3C validator