![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlemoffval | GIF version |
Description: Lemma for caucvgsr 7250. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1𝑜〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1𝑜〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1𝑜〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1𝑜〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
caucvgsrlembnd.offset | ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) |
Ref | Expression |
---|---|
caucvgsrlemoffval | ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlembnd.offset | . . . . 5 ⊢ 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) | |
2 | 1 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐺 = (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)))) |
3 | fveq2 5253 | . . . . . . 7 ⊢ (𝑎 = 𝐽 → (𝐹‘𝑎) = (𝐹‘𝐽)) | |
4 | 3 | oveq1d 5606 | . . . . . 6 ⊢ (𝑎 = 𝐽 → ((𝐹‘𝑎) +R 1R) = ((𝐹‘𝐽) +R 1R)) |
5 | 4 | oveq1d 5606 | . . . . 5 ⊢ (𝑎 = 𝐽 → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
6 | 5 | adantl 271 | . . . 4 ⊢ (((𝜑 ∧ 𝐽 ∈ N) ∧ 𝑎 = 𝐽) → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
7 | simpr 108 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐽 ∈ N) | |
8 | caucvgsr.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:N⟶R) | |
9 | 8 | ffvelrnda 5379 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐹‘𝐽) ∈ R) |
10 | 1sr 7200 | . . . . . 6 ⊢ 1R ∈ R | |
11 | addclsr 7202 | . . . . . 6 ⊢ (((𝐹‘𝐽) ∈ R ∧ 1R ∈ R) → ((𝐹‘𝐽) +R 1R) ∈ R) | |
12 | 9, 10, 11 | sylancl 404 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐹‘𝐽) +R 1R) ∈ R) |
13 | caucvgsrlembnd.bnd | . . . . . . . 8 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
14 | 13 | caucvgsrlemasr 7238 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ R) |
15 | 14 | adantr 270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → 𝐴 ∈ R) |
16 | m1r 7201 | . . . . . 6 ⊢ -1R ∈ R | |
17 | mulclsr 7203 | . . . . . 6 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
18 | 15, 16, 17 | sylancl 404 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 ·R -1R) ∈ R) |
19 | addclsr 7202 | . . . . 5 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) | |
20 | 12, 18, 19 | syl2anc 403 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R) |
21 | 2, 6, 7, 20 | fvmptd 5330 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐺‘𝐽) = (((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R))) |
22 | 21 | oveq1d 5606 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴)) |
23 | addasssrg 7205 | . . 3 ⊢ ((((𝐹‘𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) | |
24 | 12, 18, 15, 23 | syl3anc 1170 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((((𝐹‘𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴))) |
25 | addcomsrg 7204 | . . . . . 6 ⊢ (((𝐴 ·R -1R) ∈ R ∧ 𝐴 ∈ R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) | |
26 | 18, 15, 25 | syl2anc 403 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R))) |
27 | pn0sr 7220 | . . . . . 6 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
28 | 15, 27 | syl 14 | . . . . 5 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
29 | 26, 28 | eqtrd 2115 | . . . 4 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐴 ·R -1R) +R 𝐴) = 0R) |
30 | 29 | oveq2d 5607 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹‘𝐽) +R 1R) +R 0R)) |
31 | 0idsr 7216 | . . . 4 ⊢ (((𝐹‘𝐽) +R 1R) ∈ R → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) | |
32 | 12, 31 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R 0R) = ((𝐹‘𝐽) +R 1R)) |
33 | 30, 32 | eqtrd 2115 | . 2 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → (((𝐹‘𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹‘𝐽) +R 1R)) |
34 | 22, 24, 33 | 3eqtrd 2119 | 1 ⊢ ((𝜑 ∧ 𝐽 ∈ N) → ((𝐺‘𝐽) +R 𝐴) = ((𝐹‘𝐽) +R 1R)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 {cab 2069 ∀wral 2353 〈cop 3425 class class class wbr 3811 ↦ cmpt 3865 ⟶wf 4965 ‘cfv 4969 (class class class)co 5591 1𝑜c1o 6106 [cec 6220 Ncnpi 6734 <N clti 6737 ~Q ceq 6741 *Qcrq 6746 <Q cltq 6747 1Pc1p 6754 +P cpp 6755 ~R cer 6758 Rcnr 6759 0Rc0r 6760 1Rc1r 6761 -1Rcm1r 6762 +R cplr 6763 ·R cmr 6764 <R cltr 6765 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3919 ax-sep 3922 ax-nul 3930 ax-pow 3974 ax-pr 4000 ax-un 4224 ax-setind 4316 ax-iinf 4366 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2614 df-sbc 2827 df-csb 2920 df-dif 2986 df-un 2988 df-in 2990 df-ss 2997 df-nul 3270 df-pw 3408 df-sn 3428 df-pr 3429 df-op 3431 df-uni 3628 df-int 3663 df-iun 3706 df-br 3812 df-opab 3866 df-mpt 3867 df-tr 3902 df-eprel 4080 df-id 4084 df-po 4087 df-iso 4088 df-iord 4157 df-on 4159 df-suc 4162 df-iom 4369 df-xp 4407 df-rel 4408 df-cnv 4409 df-co 4410 df-dm 4411 df-rn 4412 df-res 4413 df-ima 4414 df-iota 4934 df-fun 4971 df-fn 4972 df-f 4973 df-f1 4974 df-fo 4975 df-f1o 4976 df-fv 4977 df-ov 5594 df-oprab 5595 df-mpt2 5596 df-1st 5846 df-2nd 5847 df-recs 6002 df-irdg 6067 df-1o 6113 df-2o 6114 df-oadd 6117 df-omul 6118 df-er 6222 df-ec 6224 df-qs 6228 df-ni 6766 df-pli 6767 df-mi 6768 df-lti 6769 df-plpq 6806 df-mpq 6807 df-enq 6809 df-nqqs 6810 df-plqqs 6811 df-mqqs 6812 df-1nqqs 6813 df-rq 6814 df-ltnqqs 6815 df-enq0 6886 df-nq0 6887 df-0nq0 6888 df-plq0 6889 df-mq0 6890 df-inp 6928 df-i1p 6929 df-iplp 6930 df-imp 6931 df-enr 7175 df-nr 7176 df-plr 7177 df-mr 7178 df-ltr 7179 df-0r 7180 df-1r 7181 df-m1r 7182 |
This theorem is referenced by: caucvgsrlemoffcau 7246 caucvgsrlemoffgt1 7247 caucvgsrlemoffres 7248 |
Copyright terms: Public domain | W3C validator |