ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval GIF version

Theorem caucvgsrlemoffval 7826
Description: Lemma for caucvgsr 7832. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffval ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑚   𝐹,𝑎   𝐽,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐽(𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))))
3 fveq2 5534 . . . . . . 7 (𝑎 = 𝐽 → (𝐹𝑎) = (𝐹𝐽))
43oveq1d 5912 . . . . . 6 (𝑎 = 𝐽 → ((𝐹𝑎) +R 1R) = ((𝐹𝐽) +R 1R))
54oveq1d 5912 . . . . 5 (𝑎 = 𝐽 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
65adantl 277 . . . 4 (((𝜑𝐽N) ∧ 𝑎 = 𝐽) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
7 simpr 110 . . . 4 ((𝜑𝐽N) → 𝐽N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
98ffvelcdmda 5672 . . . . . 6 ((𝜑𝐽N) → (𝐹𝐽) ∈ R)
10 1sr 7781 . . . . . 6 1RR
11 addclsr 7783 . . . . . 6 (((𝐹𝐽) ∈ R ∧ 1RR) → ((𝐹𝐽) +R 1R) ∈ R)
129, 10, 11sylancl 413 . . . . 5 ((𝜑𝐽N) → ((𝐹𝐽) +R 1R) ∈ R)
13 caucvgsrlembnd.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
1413caucvgsrlemasr 7820 . . . . . . 7 (𝜑𝐴R)
1514adantr 276 . . . . . 6 ((𝜑𝐽N) → 𝐴R)
16 m1r 7782 . . . . . 6 -1RR
17 mulclsr 7784 . . . . . 6 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
1815, 16, 17sylancl 413 . . . . 5 ((𝜑𝐽N) → (𝐴 ·R -1R) ∈ R)
19 addclsr 7783 . . . . 5 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
2012, 18, 19syl2anc 411 . . . 4 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
212, 6, 7, 20fvmptd 5618 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
2221oveq1d 5912 . 2 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴))
23 addasssrg 7786 . . 3 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R𝐴R) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
2412, 18, 15, 23syl3anc 1249 . 2 ((𝜑𝐽N) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
25 addcomsrg 7785 . . . . . 6 (((𝐴 ·R -1R) ∈ R𝐴R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
2618, 15, 25syl2anc 411 . . . . 5 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
27 pn0sr 7801 . . . . . 6 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2815, 27syl 14 . . . . 5 ((𝜑𝐽N) → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2926, 28eqtrd 2222 . . . 4 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = 0R)
3029oveq2d 5913 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹𝐽) +R 1R) +R 0R))
31 0idsr 7797 . . . 4 (((𝐹𝐽) +R 1R) ∈ R → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3212, 31syl 14 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3330, 32eqtrd 2222 . 2 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹𝐽) +R 1R))
3422, 24, 333eqtrd 2226 1 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  {cab 2175  wral 2468  cop 3610   class class class wbr 4018  cmpt 4079  wf 5231  cfv 5235  (class class class)co 5897  1oc1o 6435  [cec 6558  Ncnpi 7302   <N clti 7305   ~Q ceq 7309  *Qcrq 7314   <Q cltq 7315  1Pc1p 7322   +P cpp 7323   ~R cer 7326  Rcnr 7327  0Rc0r 7328  1Rc1r 7329  -1Rcm1r 7330   +R cplr 7331   ·R cmr 7332   <R cltr 7333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-1o 6442  df-2o 6443  df-oadd 6446  df-omul 6447  df-er 6560  df-ec 6562  df-qs 6566  df-ni 7334  df-pli 7335  df-mi 7336  df-lti 7337  df-plpq 7374  df-mpq 7375  df-enq 7377  df-nqqs 7378  df-plqqs 7379  df-mqqs 7380  df-1nqqs 7381  df-rq 7382  df-ltnqqs 7383  df-enq0 7454  df-nq0 7455  df-0nq0 7456  df-plq0 7457  df-mq0 7458  df-inp 7496  df-i1p 7497  df-iplp 7498  df-imp 7499  df-enr 7756  df-nr 7757  df-plr 7758  df-mr 7759  df-ltr 7760  df-0r 7761  df-1r 7762  df-m1r 7763
This theorem is referenced by:  caucvgsrlemoffcau  7828  caucvgsrlemoffgt1  7829  caucvgsrlemoffres  7830
  Copyright terms: Public domain W3C validator