ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval GIF version

Theorem caucvgsrlemoffval 7880
Description: Lemma for caucvgsr 7886. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffval ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑚   𝐹,𝑎   𝐽,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐽(𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))))
3 fveq2 5561 . . . . . . 7 (𝑎 = 𝐽 → (𝐹𝑎) = (𝐹𝐽))
43oveq1d 5940 . . . . . 6 (𝑎 = 𝐽 → ((𝐹𝑎) +R 1R) = ((𝐹𝐽) +R 1R))
54oveq1d 5940 . . . . 5 (𝑎 = 𝐽 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
65adantl 277 . . . 4 (((𝜑𝐽N) ∧ 𝑎 = 𝐽) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
7 simpr 110 . . . 4 ((𝜑𝐽N) → 𝐽N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
98ffvelcdmda 5700 . . . . . 6 ((𝜑𝐽N) → (𝐹𝐽) ∈ R)
10 1sr 7835 . . . . . 6 1RR
11 addclsr 7837 . . . . . 6 (((𝐹𝐽) ∈ R ∧ 1RR) → ((𝐹𝐽) +R 1R) ∈ R)
129, 10, 11sylancl 413 . . . . 5 ((𝜑𝐽N) → ((𝐹𝐽) +R 1R) ∈ R)
13 caucvgsrlembnd.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
1413caucvgsrlemasr 7874 . . . . . . 7 (𝜑𝐴R)
1514adantr 276 . . . . . 6 ((𝜑𝐽N) → 𝐴R)
16 m1r 7836 . . . . . 6 -1RR
17 mulclsr 7838 . . . . . 6 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
1815, 16, 17sylancl 413 . . . . 5 ((𝜑𝐽N) → (𝐴 ·R -1R) ∈ R)
19 addclsr 7837 . . . . 5 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
2012, 18, 19syl2anc 411 . . . 4 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
212, 6, 7, 20fvmptd 5645 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
2221oveq1d 5940 . 2 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴))
23 addasssrg 7840 . . 3 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R𝐴R) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
2412, 18, 15, 23syl3anc 1249 . 2 ((𝜑𝐽N) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
25 addcomsrg 7839 . . . . . 6 (((𝐴 ·R -1R) ∈ R𝐴R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
2618, 15, 25syl2anc 411 . . . . 5 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
27 pn0sr 7855 . . . . . 6 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2815, 27syl 14 . . . . 5 ((𝜑𝐽N) → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2926, 28eqtrd 2229 . . . 4 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = 0R)
3029oveq2d 5941 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹𝐽) +R 1R) +R 0R))
31 0idsr 7851 . . . 4 (((𝐹𝐽) +R 1R) ∈ R → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3212, 31syl 14 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3330, 32eqtrd 2229 . 2 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹𝐽) +R 1R))
3422, 24, 333eqtrd 2233 1 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475  cop 3626   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  (class class class)co 5925  1oc1o 6476  [cec 6599  Ncnpi 7356   <N clti 7359   ~Q ceq 7363  *Qcrq 7368   <Q cltq 7369  1Pc1p 7376   +P cpp 7377   ~R cer 7380  Rcnr 7381  0Rc0r 7382  1Rc1r 7383  -1Rcm1r 7384   +R cplr 7385   ·R cmr 7386   <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-ltr 7814  df-0r 7815  df-1r 7816  df-m1r 7817
This theorem is referenced by:  caucvgsrlemoffcau  7882  caucvgsrlemoffgt1  7883  caucvgsrlemoffres  7884
  Copyright terms: Public domain W3C validator