ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemoffval GIF version

Theorem caucvgsrlemoffval 7971
Description: Lemma for caucvgsr 7977. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
caucvgsrlembnd.offset 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
Assertion
Ref Expression
caucvgsrlemoffval ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Distinct variable groups:   𝐴,𝑎   𝐴,𝑚   𝐹,𝑎   𝐽,𝑎   𝜑,𝑎
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑚,𝑛,𝑙)   𝐺(𝑢,𝑘,𝑚,𝑛,𝑎,𝑙)   𝐽(𝑢,𝑘,𝑚,𝑛,𝑙)

Proof of Theorem caucvgsrlemoffval
StepHypRef Expression
1 caucvgsrlembnd.offset . . . . 5 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)))
21a1i 9 . . . 4 ((𝜑𝐽N) → 𝐺 = (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))))
3 fveq2 5623 . . . . . . 7 (𝑎 = 𝐽 → (𝐹𝑎) = (𝐹𝐽))
43oveq1d 6009 . . . . . 6 (𝑎 = 𝐽 → ((𝐹𝑎) +R 1R) = ((𝐹𝐽) +R 1R))
54oveq1d 6009 . . . . 5 (𝑎 = 𝐽 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
65adantl 277 . . . 4 (((𝜑𝐽N) ∧ 𝑎 = 𝐽) → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
7 simpr 110 . . . 4 ((𝜑𝐽N) → 𝐽N)
8 caucvgsr.f . . . . . . 7 (𝜑𝐹:NR)
98ffvelcdmda 5763 . . . . . 6 ((𝜑𝐽N) → (𝐹𝐽) ∈ R)
10 1sr 7926 . . . . . 6 1RR
11 addclsr 7928 . . . . . 6 (((𝐹𝐽) ∈ R ∧ 1RR) → ((𝐹𝐽) +R 1R) ∈ R)
129, 10, 11sylancl 413 . . . . 5 ((𝜑𝐽N) → ((𝐹𝐽) +R 1R) ∈ R)
13 caucvgsrlembnd.bnd . . . . . . . 8 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
1413caucvgsrlemasr 7965 . . . . . . 7 (𝜑𝐴R)
1514adantr 276 . . . . . 6 ((𝜑𝐽N) → 𝐴R)
16 m1r 7927 . . . . . 6 -1RR
17 mulclsr 7929 . . . . . 6 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
1815, 16, 17sylancl 413 . . . . 5 ((𝜑𝐽N) → (𝐴 ·R -1R) ∈ R)
19 addclsr 7928 . . . . 5 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
2012, 18, 19syl2anc 411 . . . 4 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) ∈ R)
212, 6, 7, 20fvmptd 5708 . . 3 ((𝜑𝐽N) → (𝐺𝐽) = (((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)))
2221oveq1d 6009 . 2 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴))
23 addasssrg 7931 . . 3 ((((𝐹𝐽) +R 1R) ∈ R ∧ (𝐴 ·R -1R) ∈ R𝐴R) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
2412, 18, 15, 23syl3anc 1271 . 2 ((𝜑𝐽N) → ((((𝐹𝐽) +R 1R) +R (𝐴 ·R -1R)) +R 𝐴) = (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)))
25 addcomsrg 7930 . . . . . 6 (((𝐴 ·R -1R) ∈ R𝐴R) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
2618, 15, 25syl2anc 411 . . . . 5 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = (𝐴 +R (𝐴 ·R -1R)))
27 pn0sr 7946 . . . . . 6 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2815, 27syl 14 . . . . 5 ((𝜑𝐽N) → (𝐴 +R (𝐴 ·R -1R)) = 0R)
2926, 28eqtrd 2262 . . . 4 ((𝜑𝐽N) → ((𝐴 ·R -1R) +R 𝐴) = 0R)
3029oveq2d 6010 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = (((𝐹𝐽) +R 1R) +R 0R))
31 0idsr 7942 . . . 4 (((𝐹𝐽) +R 1R) ∈ R → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3212, 31syl 14 . . 3 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R 0R) = ((𝐹𝐽) +R 1R))
3330, 32eqtrd 2262 . 2 ((𝜑𝐽N) → (((𝐹𝐽) +R 1R) +R ((𝐴 ·R -1R) +R 𝐴)) = ((𝐹𝐽) +R 1R))
3422, 24, 333eqtrd 2266 1 ((𝜑𝐽N) → ((𝐺𝐽) +R 𝐴) = ((𝐹𝐽) +R 1R))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  wral 2508  cop 3669   class class class wbr 4082  cmpt 4144  wf 5310  cfv 5314  (class class class)co 5994  1oc1o 6545  [cec 6668  Ncnpi 7447   <N clti 7450   ~Q ceq 7454  *Qcrq 7459   <Q cltq 7460  1Pc1p 7467   +P cpp 7468   ~R cer 7471  Rcnr 7472  0Rc0r 7473  1Rc1r 7474  -1Rcm1r 7475   +R cplr 7476   ·R cmr 7477   <R cltr 7478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-1o 6552  df-2o 6553  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-pli 7480  df-mi 7481  df-lti 7482  df-plpq 7519  df-mpq 7520  df-enq 7522  df-nqqs 7523  df-plqqs 7524  df-mqqs 7525  df-1nqqs 7526  df-rq 7527  df-ltnqqs 7528  df-enq0 7599  df-nq0 7600  df-0nq0 7601  df-plq0 7602  df-mq0 7603  df-inp 7641  df-i1p 7642  df-iplp 7643  df-imp 7644  df-enr 7901  df-nr 7902  df-plr 7903  df-mr 7904  df-ltr 7905  df-0r 7906  df-1r 7907  df-m1r 7908
This theorem is referenced by:  caucvgsrlemoffcau  7973  caucvgsrlemoffgt1  7974  caucvgsrlemoffres  7975
  Copyright terms: Public domain W3C validator