ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg GIF version

Theorem mptexg 5742
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5255 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2177 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmptss 5126 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
4 ssexg 4143 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
53, 4mpan 424 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
6 funex 5740 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
71, 5, 6sylancr 414 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2148  Vcvv 2738  wss 3130  cmpt 4065  dom cdm 4627  Fun wfun 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225
This theorem is referenced by:  mptex  5743  mptexd  5744  offval  6090  abrexexg  6119  xpexgALT  6134  offval3  6135  iunon  6285  mptelixpg  6734  updjud  7081  mkvprop  7156  cc3  7267  iseqf1olemqpcl  10496  seq3f1olemqsum  10500  seq3f1olemstep  10501  negfi  11236  climmpt  11308  restval  12694  ntrfval  13603  clsfval  13604  neifval  13643  cnprcl2k  13709  upxp  13775
  Copyright terms: Public domain W3C validator