ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg GIF version

Theorem mptexg 5536
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5065 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2089 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmptss 4940 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
4 ssexg 3984 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
53, 4mpan 416 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
6 funex 5534 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
71, 5, 6sylancr 406 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1439  Vcvv 2620  wss 3000  cmpt 3905  dom cdm 4452  Fun wfun 5022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036
This theorem is referenced by:  mptex  5537  offval  5877  abrexexg  5903  xpexgALT  5918  offval3  5919  iunon  6063  mptelixpg  6505  updjud  6827  iseqf1olemqpcl  9986  seq3f1olemqsum  9990  seq3f1olemstep  9991  negfi  10720  climmpt  10749  restval  11719  ntrfval  11861  clsfval  11862
  Copyright terms: Public domain W3C validator