ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptexg GIF version

Theorem mptexg 5709
Description: If the domain of a function given by maps-to notation is a set, the function is a set. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptexg (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mptexg
StepHypRef Expression
1 funmpt 5225 . 2 Fun (𝑥𝐴𝐵)
2 eqid 2165 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
32dmmptss 5099 . . 3 dom (𝑥𝐴𝐵) ⊆ 𝐴
4 ssexg 4120 . . 3 ((dom (𝑥𝐴𝐵) ⊆ 𝐴𝐴𝑉) → dom (𝑥𝐴𝐵) ∈ V)
53, 4mpan 421 . 2 (𝐴𝑉 → dom (𝑥𝐴𝐵) ∈ V)
6 funex 5707 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ∈ V) → (𝑥𝐴𝐵) ∈ V)
71, 5, 6sylancr 411 1 (𝐴𝑉 → (𝑥𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  Vcvv 2725  wss 3115  cmpt 4042  dom cdm 4603  Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rex 2449  df-reu 2450  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195
This theorem is referenced by:  mptex  5710  mptexd  5711  offval  6056  abrexexg  6083  xpexgALT  6098  offval3  6099  iunon  6248  mptelixpg  6696  updjud  7043  mkvprop  7118  cc3  7205  iseqf1olemqpcl  10427  seq3f1olemqsum  10431  seq3f1olemstep  10432  negfi  11165  climmpt  11237  restval  12557  ntrfval  12700  clsfval  12701  neifval  12740  cnprcl2k  12806  upxp  12872
  Copyright terms: Public domain W3C validator