ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ocnvdm GIF version

Theorem f1ocnvdm 5905
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ocnvdm ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)

Proof of Theorem f1ocnvdm
StepHypRef Expression
1 f1ocnv 5585 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1of 5572 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
31, 2syl 14 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
43ffvelcdmda 5770 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200  ccnv 4718  wf 5314  1-1-ontowf1o 5317  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  f1oiso2  5951  f1ocnvfv3  5990  en2  6973  frecuzrdglem  10633  frecuzrdgtcl  10634  frecuzrdgsuc  10636  frecuzrdgdomlem  10639  frecuzrdgfunlem  10641  frecuzrdgsuctlem  10645  frecfzennn  10648  fzfig  10652  nninfctlemfo  12561
  Copyright terms: Public domain W3C validator