![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvconst | GIF version |
Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.) |
Ref | Expression |
---|---|
dvconst | ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 5277 | . 2 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
2 | simpr2 969 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑧 ∈ ℂ) | |
3 | fvconst2g 5586 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((ℂ × {𝐴})‘𝑧) = 𝐴) | |
4 | 2, 3 | syldan 278 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((ℂ × {𝐴})‘𝑧) = 𝐴) |
5 | fvconst2g 5586 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐴})‘𝑥) = 𝐴) | |
6 | 5 | 3ad2antr1 1127 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((ℂ × {𝐴})‘𝑥) = 𝐴) |
7 | 4, 6 | oveq12d 5744 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = (𝐴 − 𝐴)) |
8 | subid 7898 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | |
9 | 8 | adantr 272 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝐴 − 𝐴) = 0) |
10 | 7, 9 | eqtrd 2145 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = 0) |
11 | 10 | oveq1d 5741 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = (0 / (𝑧 − 𝑥))) |
12 | simpr1 968 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑥 ∈ ℂ) | |
13 | 2, 12 | subcld 7990 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) ∈ ℂ) |
14 | simpr3 970 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑧 # 𝑥) | |
15 | 2, 12, 14 | subap0d 8317 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝑧 − 𝑥) # 0) |
16 | 13, 15 | div0apd 8454 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (0 / (𝑧 − 𝑥)) = 0) |
17 | 11, 16 | eqtrd 2145 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = 0) |
18 | 0cn 7676 | . 2 ⊢ 0 ∈ ℂ | |
19 | 1, 17, 18 | dvidlemap 12609 | 1 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 943 = wceq 1312 ∈ wcel 1461 {csn 3491 class class class wbr 3893 × cxp 4495 ‘cfv 5079 (class class class)co 5726 ℂcc 7539 0cc0 7541 − cmin 7850 # cap 8255 / cdiv 8339 D cdv 12574 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-mulrcl 7638 ax-addcom 7639 ax-mulcom 7640 ax-addass 7641 ax-mulass 7642 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-1rid 7646 ax-0id 7647 ax-rnegex 7648 ax-precex 7649 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-apti 7654 ax-pre-ltadd 7655 ax-pre-mulgt0 7656 ax-pre-mulext 7657 ax-arch 7658 ax-caucvg 7659 |
This theorem depends on definitions: df-bi 116 df-stab 799 df-dc 803 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rmo 2396 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-if 3439 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-po 4176 df-iso 4177 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-isom 5088 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-map 6496 df-pm 6497 df-sup 6821 df-inf 6822 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-reap 8249 df-ap 8256 df-div 8340 df-inn 8625 df-2 8683 df-3 8684 df-4 8685 df-n0 8876 df-z 8953 df-uz 9223 df-q 9308 df-rp 9338 df-xneg 9446 df-xadd 9447 df-seqfrec 10106 df-exp 10180 df-cj 10501 df-re 10502 df-im 10503 df-rsqrt 10656 df-abs 10657 df-rest 11959 df-topgen 11978 df-psmet 11993 df-xmet 11994 df-met 11995 df-bl 11996 df-mopn 11997 df-top 12002 df-topon 12015 df-bases 12047 df-ntr 12102 df-cn 12194 df-cnp 12195 df-cncf 12538 df-limced 12575 df-dvap 12576 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |