Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvconst GIF version

Theorem dvconst 12867
 Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Jim Kingdon, 2-Aug-2023.)
Assertion
Ref Expression
dvconst (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))

Proof of Theorem dvconst
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5328 . 2 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
2 simpr2 989 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑧 ∈ ℂ)
3 fvconst2g 5641 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((ℂ × {𝐴})‘𝑧) = 𝐴)
42, 3syldan 280 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((ℂ × {𝐴})‘𝑧) = 𝐴)
5 fvconst2g 5641 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐴})‘𝑥) = 𝐴)
653ad2antr1 1147 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((ℂ × {𝐴})‘𝑥) = 𝐴)
74, 6oveq12d 5799 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = (𝐴𝐴))
8 subid 8004 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
98adantr 274 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝐴𝐴) = 0)
107, 9eqtrd 2173 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = 0)
1110oveq1d 5796 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧𝑥)) = (0 / (𝑧𝑥)))
12 simpr1 988 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑥 ∈ ℂ)
132, 12subcld 8096 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝑧𝑥) ∈ ℂ)
14 simpr3 990 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → 𝑧 # 𝑥)
152, 12, 14subap0d 8429 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (𝑧𝑥) # 0)
1613, 15div0apd 8570 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → (0 / (𝑧𝑥)) = 0)
1711, 16eqtrd 2173 . 2 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 # 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧𝑥)) = 0)
18 0cn 7781 . 2 0 ∈ ℂ
191, 17, 18dvidlemap 12866 1 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481  {csn 3531   class class class wbr 3936   × cxp 4544  ‘cfv 5130  (class class class)co 5781  ℂcc 7641  0cc0 7643   − cmin 7956   # cap 8366   / cdiv 8455   D cdv 12830 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-map 6551  df-pm 6552  df-sup 6878  df-inf 6879  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-xneg 9588  df-xadd 9589  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-rest 12159  df-topgen 12178  df-psmet 12193  df-xmet 12194  df-met 12195  df-bl 12196  df-mopn 12197  df-top 12202  df-topon 12215  df-bases 12247  df-ntr 12302  df-cn 12394  df-cnp 12395  df-cncf 12764  df-limced 12831  df-dvap 12832 This theorem is referenced by:  dvexp2  12882  dvmptccn  12885  dvef  12894
 Copyright terms: Public domain W3C validator