| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd)) |
| 2 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) |
| 3 | | 0mhm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑁) |
| 4 | 2, 3 | mndidcl 13132 |
. . . . 5
⊢ (𝑁 ∈ Mnd → 0 ∈
(Base‘𝑁)) |
| 5 | 4 | adantl 277 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈
(Base‘𝑁)) |
| 6 | | fconst6g 5459 |
. . . 4
⊢ ( 0 ∈
(Base‘𝑁) →
(𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) |
| 7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) |
| 8 | | simpr 110 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd) |
| 9 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) |
| 10 | 2, 9, 3 | mndlid 13137 |
. . . . . . . 8
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) → (
0
(+g‘𝑁)
0 ) =
0
) |
| 11 | 10 | eqcomd 2202 |
. . . . . . 7
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) →
0 = (
0
(+g‘𝑁)
0
)) |
| 12 | 8, 4, 11 | syl2anc2 412 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0
(+g‘𝑁)
0
)) |
| 13 | 12 | adantr 276 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 = ( 0 (+g‘𝑁) 0 )) |
| 14 | | fn0g 13077 |
. . . . . . . . 9
⊢
0g Fn V |
| 15 | 8 | elexd 2776 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ V) |
| 16 | | funfvex 5578 |
. . . . . . . . . 10
⊢ ((Fun
0g ∧ 𝑁
∈ dom 0g) → (0g‘𝑁) ∈ V) |
| 17 | 16 | funfni 5361 |
. . . . . . . . 9
⊢
((0g Fn V ∧ 𝑁 ∈ V) → (0g‘𝑁) ∈ V) |
| 18 | 14, 15, 17 | sylancr 414 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
(0g‘𝑁)
∈ V) |
| 19 | 3, 18 | eqeltrid 2283 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈
V) |
| 20 | 19 | adantr 276 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 ∈ V) |
| 21 | | 0mhm.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
| 22 | | eqid 2196 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 23 | 21, 22 | mndcl 13125 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 24 | 23 | 3expb 1206 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 25 | 24 | adantlr 477 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
| 26 | | fvconst2g 5779 |
. . . . . 6
⊢ (( 0 ∈ V
∧ (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) |
| 27 | 20, 25, 26 | syl2anc 411 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) |
| 28 | | simprl 529 |
. . . . . . 7
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 29 | | fvconst2g 5779 |
. . . . . . 7
⊢ (( 0 ∈ V
∧ 𝑥 ∈ 𝐵) → ((𝐵 × { 0 })‘𝑥) = 0 ) |
| 30 | 20, 28, 29 | syl2anc 411 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘𝑥) = 0 ) |
| 31 | | simprr 531 |
. . . . . . 7
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 32 | | fvconst2g 5779 |
. . . . . . 7
⊢ (( 0 ∈ V
∧ 𝑦 ∈ 𝐵) → ((𝐵 × { 0 })‘𝑦) = 0 ) |
| 33 | 20, 31, 32 | syl2anc 411 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘𝑦) = 0 ) |
| 34 | 30, 33 | oveq12d 5943 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g‘𝑁) 0 )) |
| 35 | 13, 27, 34 | 3eqtr4d 2239 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) |
| 36 | 35 | ralrimivva 2579 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) |
| 37 | | eqid 2196 |
. . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 38 | 21, 37 | mndidcl 13132 |
. . . . 5
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
| 39 | 38 | adantr 276 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
(0g‘𝑀)
∈ 𝐵) |
| 40 | | fvconst2g 5779 |
. . . 4
⊢ (( 0 ∈ V
∧ (0g‘𝑀) ∈ 𝐵) → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) |
| 41 | 19, 39, 40 | syl2anc 411 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) |
| 42 | 7, 36, 41 | 3jca 1179 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 )) |
| 43 | 21, 2, 22, 9, 37, 3 | ismhm 13163 |
. 2
⊢ ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ))) |
| 44 | 1, 42, 43 | sylanbrc 417 |
1
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |