Step | Hyp | Ref
| Expression |
1 | | id 19 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd)) |
2 | | eqid 2170 |
. . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) |
3 | | 0mhm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑁) |
4 | 2, 3 | mndidcl 12666 |
. . . . 5
⊢ (𝑁 ∈ Mnd → 0 ∈
(Base‘𝑁)) |
5 | 4 | adantl 275 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈
(Base‘𝑁)) |
6 | | fconst6g 5396 |
. . . 4
⊢ ( 0 ∈
(Base‘𝑁) →
(𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) |
7 | 5, 6 | syl 14 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) |
8 | | simpr 109 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd) |
9 | | eqid 2170 |
. . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) |
10 | 2, 9, 3 | mndlid 12671 |
. . . . . . . 8
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) → (
0
(+g‘𝑁)
0 ) =
0
) |
11 | 10 | eqcomd 2176 |
. . . . . . 7
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) →
0 = (
0
(+g‘𝑁)
0
)) |
12 | 8, 4, 11 | syl2anc2 410 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0
(+g‘𝑁)
0
)) |
13 | 12 | adantr 274 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 = ( 0 (+g‘𝑁) 0 )) |
14 | | fn0g 12629 |
. . . . . . . . 9
⊢
0g Fn V |
15 | 8 | elexd 2743 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ V) |
16 | | funfvex 5513 |
. . . . . . . . . 10
⊢ ((Fun
0g ∧ 𝑁
∈ dom 0g) → (0g‘𝑁) ∈ V) |
17 | 16 | funfni 5298 |
. . . . . . . . 9
⊢
((0g Fn V ∧ 𝑁 ∈ V) → (0g‘𝑁) ∈ V) |
18 | 14, 15, 17 | sylancr 412 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
(0g‘𝑁)
∈ V) |
19 | 3, 18 | eqeltrid 2257 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈
V) |
20 | 19 | adantr 274 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 ∈ V) |
21 | | 0mhm.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) |
22 | | eqid 2170 |
. . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) |
23 | 21, 22 | mndcl 12659 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
24 | 23 | 3expb 1199 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
25 | 24 | adantlr 474 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) |
26 | | fvconst2g 5710 |
. . . . . 6
⊢ (( 0 ∈ V
∧ (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) |
27 | 20, 25, 26 | syl2anc 409 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) |
28 | | simprl 526 |
. . . . . . 7
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
29 | | fvconst2g 5710 |
. . . . . . 7
⊢ (( 0 ∈ V
∧ 𝑥 ∈ 𝐵) → ((𝐵 × { 0 })‘𝑥) = 0 ) |
30 | 20, 28, 29 | syl2anc 409 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘𝑥) = 0 ) |
31 | | simprr 527 |
. . . . . . 7
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
32 | | fvconst2g 5710 |
. . . . . . 7
⊢ (( 0 ∈ V
∧ 𝑦 ∈ 𝐵) → ((𝐵 × { 0 })‘𝑦) = 0 ) |
33 | 20, 31, 32 | syl2anc 409 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘𝑦) = 0 ) |
34 | 30, 33 | oveq12d 5871 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g‘𝑁) 0 )) |
35 | 13, 27, 34 | 3eqtr4d 2213 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) |
36 | 35 | ralrimivva 2552 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) |
37 | | eqid 2170 |
. . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) |
38 | 21, 37 | mndidcl 12666 |
. . . . 5
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
39 | 38 | adantr 274 |
. . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
(0g‘𝑀)
∈ 𝐵) |
40 | | fvconst2g 5710 |
. . . 4
⊢ (( 0 ∈ V
∧ (0g‘𝑀) ∈ 𝐵) → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) |
41 | 19, 39, 40 | syl2anc 409 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) |
42 | 7, 36, 41 | 3jca 1172 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 )) |
43 | 21, 2, 22, 9, 37, 3 | ismhm 12685 |
. 2
⊢ ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ))) |
44 | 1, 42, 43 | sylanbrc 415 |
1
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |