ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mhm GIF version

Theorem 0mhm 13514
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z 0 = (0g𝑁)
0mhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0mhm ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))

Proof of Theorem 0mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd))
2 eqid 2229 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
3 0mhm.z . . . . . 6 0 = (0g𝑁)
42, 3mndidcl 13458 . . . . 5 (𝑁 ∈ Mnd → 0 ∈ (Base‘𝑁))
54adantl 277 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ (Base‘𝑁))
6 fconst6g 5523 . . . 4 ( 0 ∈ (Base‘𝑁) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
75, 6syl 14 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
8 simpr 110 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd)
9 eqid 2229 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
102, 9, 3mndlid 13463 . . . . . . . 8 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → ( 0 (+g𝑁) 0 ) = 0 )
1110eqcomd 2235 . . . . . . 7 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → 0 = ( 0 (+g𝑁) 0 ))
128, 4, 11syl2anc2 412 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0 (+g𝑁) 0 ))
1312adantr 276 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 = ( 0 (+g𝑁) 0 ))
14 fn0g 13403 . . . . . . . . 9 0g Fn V
158elexd 2813 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ V)
16 funfvex 5643 . . . . . . . . . 10 ((Fun 0g𝑁 ∈ dom 0g) → (0g𝑁) ∈ V)
1716funfni 5422 . . . . . . . . 9 ((0g Fn V ∧ 𝑁 ∈ V) → (0g𝑁) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑁) ∈ V)
193, 18eqeltrid 2316 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ V)
2019adantr 276 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 ∈ V)
21 0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
22 eqid 2229 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
2321, 22mndcl 13451 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
24233expb 1228 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2524adantlr 477 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
26 fvconst2g 5852 . . . . . 6 (( 0 ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ 𝐵) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
2720, 25, 26syl2anc 411 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
28 simprl 529 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
29 fvconst2g 5852 . . . . . . 7 (( 0 ∈ V ∧ 𝑥𝐵) → ((𝐵 × { 0 })‘𝑥) = 0 )
3020, 28, 29syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑥) = 0 )
31 simprr 531 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
32 fvconst2g 5852 . . . . . . 7 (( 0 ∈ V ∧ 𝑦𝐵) → ((𝐵 × { 0 })‘𝑦) = 0 )
3320, 31, 32syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑦) = 0 )
3430, 33oveq12d 6018 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g𝑁) 0 ))
3513, 27, 343eqtr4d 2272 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
3635ralrimivva 2612 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
37 eqid 2229 . . . . . 6 (0g𝑀) = (0g𝑀)
3821, 37mndidcl 13458 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
3938adantr 276 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑀) ∈ 𝐵)
40 fvconst2g 5852 . . . 4 (( 0 ∈ V ∧ (0g𝑀) ∈ 𝐵) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
4119, 39, 40syl2anc 411 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
427, 36, 413jca 1201 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 ))
4321, 2, 22, 9, 37, 3ismhm 13489 . 2 ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 )))
441, 42, 43sylanbrc 417 1 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  {csn 3666   × cxp 4716   Fn wfn 5312  wf 5313  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444   MndHom cmhm 13485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487
This theorem is referenced by:  0ghm  13790
  Copyright terms: Public domain W3C validator