ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mhm GIF version

Theorem 0mhm 13393
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z 0 = (0g𝑁)
0mhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0mhm ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))

Proof of Theorem 0mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd))
2 eqid 2206 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
3 0mhm.z . . . . . 6 0 = (0g𝑁)
42, 3mndidcl 13337 . . . . 5 (𝑁 ∈ Mnd → 0 ∈ (Base‘𝑁))
54adantl 277 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ (Base‘𝑁))
6 fconst6g 5486 . . . 4 ( 0 ∈ (Base‘𝑁) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
75, 6syl 14 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
8 simpr 110 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd)
9 eqid 2206 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
102, 9, 3mndlid 13342 . . . . . . . 8 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → ( 0 (+g𝑁) 0 ) = 0 )
1110eqcomd 2212 . . . . . . 7 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → 0 = ( 0 (+g𝑁) 0 ))
128, 4, 11syl2anc2 412 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0 (+g𝑁) 0 ))
1312adantr 276 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 = ( 0 (+g𝑁) 0 ))
14 fn0g 13282 . . . . . . . . 9 0g Fn V
158elexd 2787 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ V)
16 funfvex 5606 . . . . . . . . . 10 ((Fun 0g𝑁 ∈ dom 0g) → (0g𝑁) ∈ V)
1716funfni 5385 . . . . . . . . 9 ((0g Fn V ∧ 𝑁 ∈ V) → (0g𝑁) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑁) ∈ V)
193, 18eqeltrid 2293 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ V)
2019adantr 276 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 ∈ V)
21 0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
22 eqid 2206 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
2321, 22mndcl 13330 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
24233expb 1207 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2524adantlr 477 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
26 fvconst2g 5811 . . . . . 6 (( 0 ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ 𝐵) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
2720, 25, 26syl2anc 411 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
28 simprl 529 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
29 fvconst2g 5811 . . . . . . 7 (( 0 ∈ V ∧ 𝑥𝐵) → ((𝐵 × { 0 })‘𝑥) = 0 )
3020, 28, 29syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑥) = 0 )
31 simprr 531 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
32 fvconst2g 5811 . . . . . . 7 (( 0 ∈ V ∧ 𝑦𝐵) → ((𝐵 × { 0 })‘𝑦) = 0 )
3320, 31, 32syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑦) = 0 )
3430, 33oveq12d 5975 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g𝑁) 0 ))
3513, 27, 343eqtr4d 2249 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
3635ralrimivva 2589 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
37 eqid 2206 . . . . . 6 (0g𝑀) = (0g𝑀)
3821, 37mndidcl 13337 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
3938adantr 276 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑀) ∈ 𝐵)
40 fvconst2g 5811 . . . 4 (( 0 ∈ V ∧ (0g𝑀) ∈ 𝐵) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
4119, 39, 40syl2anc 411 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
427, 36, 413jca 1180 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 ))
4321, 2, 22, 9, 37, 3ismhm 13368 . 2 ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 )))
441, 42, 43sylanbrc 417 1 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  Vcvv 2773  {csn 3638   × cxp 4681   Fn wfn 5275  wf 5276  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  0gc0g 13163  Mndcmnd 13323   MndHom cmhm 13364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-map 6750  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-mhm 13366
This theorem is referenced by:  0ghm  13669
  Copyright terms: Public domain W3C validator