ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0mhm GIF version

Theorem 0mhm 13260
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z 0 = (0g𝑁)
0mhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0mhm ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))

Proof of Theorem 0mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd))
2 eqid 2204 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
3 0mhm.z . . . . . 6 0 = (0g𝑁)
42, 3mndidcl 13204 . . . . 5 (𝑁 ∈ Mnd → 0 ∈ (Base‘𝑁))
54adantl 277 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ (Base‘𝑁))
6 fconst6g 5473 . . . 4 ( 0 ∈ (Base‘𝑁) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
75, 6syl 14 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
8 simpr 110 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd)
9 eqid 2204 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
102, 9, 3mndlid 13209 . . . . . . . 8 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → ( 0 (+g𝑁) 0 ) = 0 )
1110eqcomd 2210 . . . . . . 7 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → 0 = ( 0 (+g𝑁) 0 ))
128, 4, 11syl2anc2 412 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0 (+g𝑁) 0 ))
1312adantr 276 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 = ( 0 (+g𝑁) 0 ))
14 fn0g 13149 . . . . . . . . 9 0g Fn V
158elexd 2784 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ V)
16 funfvex 5592 . . . . . . . . . 10 ((Fun 0g𝑁 ∈ dom 0g) → (0g𝑁) ∈ V)
1716funfni 5375 . . . . . . . . 9 ((0g Fn V ∧ 𝑁 ∈ V) → (0g𝑁) ∈ V)
1814, 15, 17sylancr 414 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑁) ∈ V)
193, 18eqeltrid 2291 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ V)
2019adantr 276 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 ∈ V)
21 0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
22 eqid 2204 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
2321, 22mndcl 13197 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
24233expb 1206 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2524adantlr 477 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
26 fvconst2g 5797 . . . . . 6 (( 0 ∈ V ∧ (𝑥(+g𝑀)𝑦) ∈ 𝐵) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
2720, 25, 26syl2anc 411 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
28 simprl 529 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
29 fvconst2g 5797 . . . . . . 7 (( 0 ∈ V ∧ 𝑥𝐵) → ((𝐵 × { 0 })‘𝑥) = 0 )
3020, 28, 29syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑥) = 0 )
31 simprr 531 . . . . . . 7 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
32 fvconst2g 5797 . . . . . . 7 (( 0 ∈ V ∧ 𝑦𝐵) → ((𝐵 × { 0 })‘𝑦) = 0 )
3320, 31, 32syl2anc 411 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘𝑦) = 0 )
3430, 33oveq12d 5961 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g𝑁) 0 ))
3513, 27, 343eqtr4d 2247 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
3635ralrimivva 2587 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
37 eqid 2204 . . . . . 6 (0g𝑀) = (0g𝑀)
3821, 37mndidcl 13204 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
3938adantr 276 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑀) ∈ 𝐵)
40 fvconst2g 5797 . . . 4 (( 0 ∈ V ∧ (0g𝑀) ∈ 𝐵) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
4119, 39, 40syl2anc 411 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
427, 36, 413jca 1179 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 ))
4321, 2, 22, 9, 37, 3ismhm 13235 . 2 ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 )))
441, 42, 43sylanbrc 417 1 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wral 2483  Vcvv 2771  {csn 3632   × cxp 4672   Fn wfn 5265  wf 5266  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  0gc0g 13030  Mndcmnd 13190   MndHom cmhm 13231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mhm 13233
This theorem is referenced by:  0ghm  13536
  Copyright terms: Public domain W3C validator