| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > flqcl | GIF version | ||
| Description: The floor (greatest integer) function yields an integer when applied to a rational (closure law). For a similar closure law for real numbers apart from any integer, see flapcl 10370. (Contributed by Jim Kingdon, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| flqcl | ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qre 9704 | . . 3 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
| 2 | flval 10367 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)))) |
| 4 | qbtwnz 10346 | . . 3 ⊢ (𝐴 ∈ ℚ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) | |
| 5 | riotacl 5895 | . . 3 ⊢ (∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1)) → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ∈ ℤ) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ ℚ → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ 𝐴 < (𝑥 + 1))) ∈ ℤ) |
| 7 | 3, 6 | eqeltrd 2273 | 1 ⊢ (𝐴 ∈ ℚ → (⌊‘𝐴) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∃!wreu 2477 class class class wbr 4034 ‘cfv 5259 ℩crio 5879 (class class class)co 5925 ℝcr 7883 1c1 7885 + caddc 7887 < clt 8066 ≤ cle 8067 ℤcz 9331 ℚcq 9698 ⌊cfl 10363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 ax-arch 8003 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6202 df-2nd 6203 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-inn 8996 df-n0 9255 df-z 9332 df-q 9699 df-rp 9734 df-fl 10365 |
| This theorem is referenced by: flqlelt 10371 flqcld 10372 qfraclt1 10375 qfracge0 10376 flqidm 10380 flqidz 10381 flqge0nn0 10388 flqge1nn 10389 flqaddz 10392 flqzadd 10393 flqmulnn0 10394 fldiv4lem1div2 10402 ceilqval 10403 flqleceil 10414 flqeqceilz 10415 intqfrac2 10416 flqdiv 10418 modqfrac 10434 flqmod 10435 intqfrac 10436 modqmulnn 10439 |
| Copyright terms: Public domain | W3C validator |