ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem GIF version

Theorem dvidsslem 14929
Description: Lemma for dvconstss 14934. Analogue of dvidlemap 14927 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvidsslem.j 𝐽 = (𝐾t 𝑆)
dvidsslem.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvidsslem.1 (𝜑𝐹:𝑋⟶ℂ)
dvidsslem.x (𝜑𝑋𝐽)
dvidsslem.2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidsslem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidsslem (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋,𝑧
Allowed substitution hints:   𝐽(𝑥,𝑧)   𝐾(𝑥,𝑧)

Proof of Theorem dvidsslem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ssidd 3204 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
3 dvidsslem.j . . . . . . . . . 10 𝐽 = (𝐾t 𝑆)
4 restsspw 12920 . . . . . . . . . 10 (𝐾t 𝑆) ⊆ 𝒫 𝑆
53, 4eqsstri 3215 . . . . . . . . 9 𝐽 ⊆ 𝒫 𝑆
6 dvidsslem.x . . . . . . . . 9 (𝜑𝑋𝐽)
75, 6sselid 3181 . . . . . . . 8 (𝜑𝑋 ∈ 𝒫 𝑆)
87elpwid 3616 . . . . . . 7 (𝜑𝑋𝑆)
9 cnex 8003 . . . . . . . 8 ℂ ∈ V
109a1i 9 . . . . . . 7 (𝜑 → ℂ ∈ V)
11 pmss12g 6734 . . . . . . 7 (((ℂ ⊆ ℂ ∧ 𝑋𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
122, 8, 10, 1, 11syl22anc 1250 . . . . . 6 (𝜑 → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
13 dvidsslem.1 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
14 fpmg 6733 . . . . . . 7 ((𝑋𝐽 ∧ ℂ ∈ V ∧ 𝐹:𝑋⟶ℂ) → 𝐹 ∈ (ℂ ↑pm 𝑋))
156, 10, 13, 14syl3anc 1249 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑋))
1612, 15sseldd 3184 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
17 dvfgg 14924 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
181, 16, 17syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
19 recnprss 14923 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
201, 19syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
2120, 13, 8dvbss 14921 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
22 reldvg 14915 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
2320, 16, 22syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D 𝐹))
2423adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D 𝐹))
25 dvidsslem.k . . . . . . . . . . . . . . . 16 𝐾 = (MetOpen‘(abs ∘ − ))
2625cntoptop 14769 . . . . . . . . . . . . . . 15 𝐾 ∈ Top
2726a1i 9 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
28 resttop 14406 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾t 𝑆) ∈ Top)
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝐾t 𝑆) ∈ Top)
303, 29eqeltrid 2283 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
31 isopn3i 14371 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑋𝐽) → ((int‘𝐽)‘𝑋) = 𝑋)
3230, 6, 31syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑋)
3332eqcomd 2202 . . . . . . . . . 10 (𝜑𝑋 = ((int‘𝐽)‘𝑋))
3433eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑥𝑋𝑥 ∈ ((int‘𝐽)‘𝑋)))
3534biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ((int‘𝐽)‘𝑋))
36 limcresi 14902 . . . . . . . . . 10 ((𝑧𝑋𝐵) lim 𝑥) ⊆ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥)
37 dvidsslem.3 . . . . . . . . . . . . . 14 𝐵 ∈ ℂ
3837a1i 9 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
398, 20sstrd 3193 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
40 cncfmptc 14832 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4138, 39, 2, 40syl3anc 1249 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4241adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
43 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥𝑋)
44 eqidd 2197 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
4542, 43, 44cnmptlimc 14910 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧𝑋𝐵) lim 𝑥))
4636, 45sselid 3181 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
47 breq1 4036 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
4847elrab 2920 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↔ (𝑧𝑋𝑧 # 𝑥))
49 dvidsslem.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
50493exp2 1227 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 → (𝑧𝑋 → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
5150imp43 355 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5248, 51sylan2b 287 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑧 ∈ {𝑤𝑋𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5352mpteq2dva 4123 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
54 ssrab2 3268 . . . . . . . . . . . 12 {𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋
55 resmpt 4994 . . . . . . . . . . . 12 ({𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋 → ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵)
5753, 56eqtr4di 2247 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}))
5857oveq1d 5937 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
5946, 58eleqtrrd 2276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
60 eqid 2196 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
613, 25, 60, 20, 13, 8eldvap 14918 . . . . . . . . 9 (𝜑 → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6261adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6335, 59, 62mpbir2and 946 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)𝐵)
64 releldm 4901 . . . . . . 7 ((Rel (𝑆 D 𝐹) ∧ 𝑥(𝑆 D 𝐹)𝐵) → 𝑥 ∈ dom (𝑆 D 𝐹))
6524, 63, 64syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
6621, 65eqelssd 3202 . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
6766feq2d 5395 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6818, 67mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6968ffnd 5408 . 2 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
70 fnconstg 5455 . . 3 (𝐵 ∈ ℂ → (𝑋 × {𝐵}) Fn 𝑋)
7137, 70mp1i 10 . 2 (𝜑 → (𝑋 × {𝐵}) Fn 𝑋)
7218adantr 276 . . . . . 6 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
7372ffund 5411 . . . . 5 ((𝜑𝑥𝑋) → Fun (𝑆 D 𝐹))
74 funbrfvb 5603 . . . . 5 ((Fun (𝑆 D 𝐹) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7573, 65, 74syl2anc 411 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7663, 75mpbird 167 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = 𝐵)
77 fvconst2g 5776 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7838, 77sylan 283 . . 3 ((𝜑𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7976, 78eqtr4d 2232 . 2 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑋 × {𝐵})‘𝑥))
8069, 71, 79eqfnfvd 5662 1 (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3605  {csn 3622  {cpr 3623   class class class wbr 4033  cmpt 4094   × cxp 4661  dom cdm 4663  cres 4665  ccom 4667  Rel wrel 4668  Fun wfun 5252   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  pm cpm 6708  cc 7877  cr 7878  cmin 8197   # cap 8608   / cdiv 8699  abscabs 11162  t crest 12910  MetOpencmopn 14097  Topctop 14233  intcnt 14329  cnccncf 14806   lim climc 14890   D cdv 14891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-pm 6710  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-cncf 14807  df-limced 14892  df-dvap 14893
This theorem is referenced by:  dvconstss  14934
  Copyright terms: Public domain W3C validator