ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem GIF version

Theorem dvidsslem 14955
Description: Lemma for dvconstss 14960. Analogue of dvidlemap 14953 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvidsslem.j 𝐽 = (𝐾t 𝑆)
dvidsslem.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvidsslem.1 (𝜑𝐹:𝑋⟶ℂ)
dvidsslem.x (𝜑𝑋𝐽)
dvidsslem.2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidsslem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidsslem (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋,𝑧
Allowed substitution hints:   𝐽(𝑥,𝑧)   𝐾(𝑥,𝑧)

Proof of Theorem dvidsslem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ssidd 3205 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
3 dvidsslem.j . . . . . . . . . 10 𝐽 = (𝐾t 𝑆)
4 restsspw 12937 . . . . . . . . . 10 (𝐾t 𝑆) ⊆ 𝒫 𝑆
53, 4eqsstri 3216 . . . . . . . . 9 𝐽 ⊆ 𝒫 𝑆
6 dvidsslem.x . . . . . . . . 9 (𝜑𝑋𝐽)
75, 6sselid 3182 . . . . . . . 8 (𝜑𝑋 ∈ 𝒫 𝑆)
87elpwid 3617 . . . . . . 7 (𝜑𝑋𝑆)
9 cnex 8006 . . . . . . . 8 ℂ ∈ V
109a1i 9 . . . . . . 7 (𝜑 → ℂ ∈ V)
11 pmss12g 6736 . . . . . . 7 (((ℂ ⊆ ℂ ∧ 𝑋𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
122, 8, 10, 1, 11syl22anc 1250 . . . . . 6 (𝜑 → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
13 dvidsslem.1 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
14 fpmg 6735 . . . . . . 7 ((𝑋𝐽 ∧ ℂ ∈ V ∧ 𝐹:𝑋⟶ℂ) → 𝐹 ∈ (ℂ ↑pm 𝑋))
156, 10, 13, 14syl3anc 1249 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑋))
1612, 15sseldd 3185 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
17 dvfgg 14950 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
181, 16, 17syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
19 recnprss 14949 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
201, 19syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
2120, 13, 8dvbss 14947 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
22 reldvg 14941 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
2320, 16, 22syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D 𝐹))
2423adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D 𝐹))
25 dvidsslem.k . . . . . . . . . . . . . . . 16 𝐾 = (MetOpen‘(abs ∘ − ))
2625cntoptop 14795 . . . . . . . . . . . . . . 15 𝐾 ∈ Top
2726a1i 9 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
28 resttop 14432 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾t 𝑆) ∈ Top)
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝐾t 𝑆) ∈ Top)
303, 29eqeltrid 2283 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
31 isopn3i 14397 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑋𝐽) → ((int‘𝐽)‘𝑋) = 𝑋)
3230, 6, 31syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑋)
3332eqcomd 2202 . . . . . . . . . 10 (𝜑𝑋 = ((int‘𝐽)‘𝑋))
3433eleq2d 2266 . . . . . . . . 9 (𝜑 → (𝑥𝑋𝑥 ∈ ((int‘𝐽)‘𝑋)))
3534biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ((int‘𝐽)‘𝑋))
36 limcresi 14928 . . . . . . . . . 10 ((𝑧𝑋𝐵) lim 𝑥) ⊆ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥)
37 dvidsslem.3 . . . . . . . . . . . . . 14 𝐵 ∈ ℂ
3837a1i 9 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
398, 20sstrd 3194 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
40 cncfmptc 14858 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4138, 39, 2, 40syl3anc 1249 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4241adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
43 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥𝑋)
44 eqidd 2197 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
4542, 43, 44cnmptlimc 14936 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧𝑋𝐵) lim 𝑥))
4636, 45sselid 3182 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
47 breq1 4037 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
4847elrab 2920 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↔ (𝑧𝑋𝑧 # 𝑥))
49 dvidsslem.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
50493exp2 1227 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 → (𝑧𝑋 → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
5150imp43 355 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5248, 51sylan2b 287 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑧 ∈ {𝑤𝑋𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5352mpteq2dva 4124 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
54 ssrab2 3269 . . . . . . . . . . . 12 {𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋
55 resmpt 4995 . . . . . . . . . . . 12 ({𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋 → ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵)
5753, 56eqtr4di 2247 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}))
5857oveq1d 5938 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
5946, 58eleqtrrd 2276 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
60 eqid 2196 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
613, 25, 60, 20, 13, 8eldvap 14944 . . . . . . . . 9 (𝜑 → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6261adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6335, 59, 62mpbir2and 946 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)𝐵)
64 releldm 4902 . . . . . . 7 ((Rel (𝑆 D 𝐹) ∧ 𝑥(𝑆 D 𝐹)𝐵) → 𝑥 ∈ dom (𝑆 D 𝐹))
6524, 63, 64syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
6621, 65eqelssd 3203 . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
6766feq2d 5396 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6818, 67mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6968ffnd 5409 . 2 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
70 fnconstg 5456 . . 3 (𝐵 ∈ ℂ → (𝑋 × {𝐵}) Fn 𝑋)
7137, 70mp1i 10 . 2 (𝜑 → (𝑋 × {𝐵}) Fn 𝑋)
7218adantr 276 . . . . . 6 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
7372ffund 5412 . . . . 5 ((𝜑𝑥𝑋) → Fun (𝑆 D 𝐹))
74 funbrfvb 5604 . . . . 5 ((Fun (𝑆 D 𝐹) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7573, 65, 74syl2anc 411 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7663, 75mpbird 167 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = 𝐵)
77 fvconst2g 5777 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7838, 77sylan 283 . . 3 ((𝜑𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7976, 78eqtr4d 2232 . 2 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑋 × {𝐵})‘𝑥))
8069, 71, 79eqfnfvd 5663 1 (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {crab 2479  Vcvv 2763  wss 3157  𝒫 cpw 3606  {csn 3623  {cpr 3624   class class class wbr 4034  cmpt 4095   × cxp 4662  dom cdm 4664  cres 4666  ccom 4668  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5923  pm cpm 6710  cc 7880  cr 7881  cmin 8200   # cap 8611   / cdiv 8702  abscabs 11165  t crest 12927  MetOpencmopn 14123  Topctop 14259  intcnt 14355  cnccncf 14832   lim climc 14916   D cdv 14917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-frec 6451  df-map 6711  df-pm 6712  df-sup 7052  df-inf 7053  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-xneg 9850  df-xadd 9851  df-seqfrec 10543  df-exp 10634  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-rest 12929  df-topgen 12948  df-psmet 14125  df-xmet 14126  df-met 14127  df-bl 14128  df-mopn 14129  df-top 14260  df-topon 14273  df-bases 14305  df-ntr 14358  df-cn 14450  df-cnp 14451  df-cncf 14833  df-limced 14918  df-dvap 14919
This theorem is referenced by:  dvconstss  14960
  Copyright terms: Public domain W3C validator