| Step | Hyp | Ref
| Expression |
| 1 | | dvidsslem.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 2 | | ssidd 3204 |
. . . . . . 7
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 3 | | dvidsslem.j |
. . . . . . . . . 10
⊢ 𝐽 = (𝐾 ↾t 𝑆) |
| 4 | | restsspw 12920 |
. . . . . . . . . 10
⊢ (𝐾 ↾t 𝑆) ⊆ 𝒫 𝑆 |
| 5 | 3, 4 | eqsstri 3215 |
. . . . . . . . 9
⊢ 𝐽 ⊆ 𝒫 𝑆 |
| 6 | | dvidsslem.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
| 7 | 5, 6 | sselid 3181 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝒫 𝑆) |
| 8 | 7 | elpwid 3616 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| 9 | | cnex 8003 |
. . . . . . . 8
⊢ ℂ
∈ V |
| 10 | 9 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → ℂ ∈
V) |
| 11 | | pmss12g 6734 |
. . . . . . 7
⊢
(((ℂ ⊆ ℂ ∧ 𝑋 ⊆ 𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}))
→ (ℂ ↑pm 𝑋) ⊆ (ℂ
↑pm 𝑆)) |
| 12 | 2, 8, 10, 1, 11 | syl22anc 1250 |
. . . . . 6
⊢ (𝜑 → (ℂ
↑pm 𝑋) ⊆ (ℂ
↑pm 𝑆)) |
| 13 | | dvidsslem.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 14 | | fpmg 6733 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐽 ∧ ℂ ∈ V ∧ 𝐹:𝑋⟶ℂ) → 𝐹 ∈ (ℂ ↑pm
𝑋)) |
| 15 | 6, 10, 13, 14 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
𝑋)) |
| 16 | 12, 15 | sseldd 3184 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
𝑆)) |
| 17 | | dvfgg 14924 |
. . . . 5
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧
𝐹 ∈ (ℂ
↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 18 | 1, 16, 17 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 19 | | recnprss 14923 |
. . . . . . . 8
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
| 20 | 1, 19 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 21 | 20, 13, 8 | dvbss 14921 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋) |
| 22 | | reldvg 14915 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ
↑pm 𝑆)) → Rel (𝑆 D 𝐹)) |
| 23 | 20, 16, 22 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → Rel (𝑆 D 𝐹)) |
| 24 | 23 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Rel (𝑆 D 𝐹)) |
| 25 | | dvidsslem.k |
. . . . . . . . . . . . . . . 16
⊢ 𝐾 = (MetOpen‘(abs ∘
− )) |
| 26 | 25 | cntoptop 14769 |
. . . . . . . . . . . . . . 15
⊢ 𝐾 ∈ Top |
| 27 | 26 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐾 ∈ Top) |
| 28 | | resttop 14406 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ})
→ (𝐾
↾t 𝑆)
∈ Top) |
| 29 | 27, 1, 28 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ Top) |
| 30 | 3, 29 | eqeltrid 2283 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ Top) |
| 31 | | isopn3i 14371 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ 𝑋 ∈ 𝐽) → ((int‘𝐽)‘𝑋) = 𝑋) |
| 32 | 30, 6, 31 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (𝜑 → ((int‘𝐽)‘𝑋) = 𝑋) |
| 33 | 32 | eqcomd 2202 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 = ((int‘𝐽)‘𝑋)) |
| 34 | 33 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ((int‘𝐽)‘𝑋))) |
| 35 | 34 | biimpa 296 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ((int‘𝐽)‘𝑋)) |
| 36 | | limcresi 14902 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) limℂ 𝑥) |
| 37 | | dvidsslem.3 |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈ ℂ |
| 38 | 37 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 39 | 8, 20 | sstrd 3193 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 40 | | cncfmptc 14832 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑧
∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| 41 | 38, 39, 2, 40 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| 42 | 41 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
| 43 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 44 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
| 45 | 42, 43, 44 | cnmptlimc 14910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ((𝑧 ∈ 𝑋 ↦ 𝐵) limℂ 𝑥)) |
| 46 | 36, 45 | sselid 3181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ (((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 47 | | breq1 4036 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → (𝑤 # 𝑥 ↔ 𝑧 # 𝑥)) |
| 48 | 47 | elrab 2920 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) |
| 49 | | dvidsslem.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 50 | 49 | 3exp2 1227 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝑋 → (𝑧 ∈ 𝑋 → (𝑧 # 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
| 51 | 50 | imp43 355 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑧 ∈ 𝑋 ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 52 | 48, 51 | sylan2b 287 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 53 | 52 | mpteq2dva 4123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 54 | | ssrab2 3268 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ⊆ 𝑋 |
| 55 | | resmpt 4994 |
. . . . . . . . . . . 12
⊢ ({𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ⊆ 𝑋 → ((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ 𝐵) |
| 57 | 53, 56 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥})) |
| 58 | 57 | oveq1d 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ 𝑋 ↦ 𝐵) ↾ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 59 | 46, 58 | eleqtrrd 2276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 60 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
| 61 | 3, 25, 60, 20, 13, 8 | eldvap 14918 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 62 | 61 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 63 | 35, 59, 62 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥(𝑆 D 𝐹)𝐵) |
| 64 | | releldm 4901 |
. . . . . . 7
⊢ ((Rel
(𝑆 D 𝐹) ∧ 𝑥(𝑆 D 𝐹)𝐵) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 65 | 24, 63, 64 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹)) |
| 66 | 21, 65 | eqelssd 3202 |
. . . . 5
⊢ (𝜑 → dom (𝑆 D 𝐹) = 𝑋) |
| 67 | 66 | feq2d 5395 |
. . . 4
⊢ (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ)) |
| 68 | 18, 67 | mpbid 147 |
. . 3
⊢ (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ) |
| 69 | 68 | ffnd 5408 |
. 2
⊢ (𝜑 → (𝑆 D 𝐹) Fn 𝑋) |
| 70 | | fnconstg 5455 |
. . 3
⊢ (𝐵 ∈ ℂ → (𝑋 × {𝐵}) Fn 𝑋) |
| 71 | 37, 70 | mp1i 10 |
. 2
⊢ (𝜑 → (𝑋 × {𝐵}) Fn 𝑋) |
| 72 | 18 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ) |
| 73 | 72 | ffund 5411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Fun (𝑆 D 𝐹)) |
| 74 | | funbrfvb 5603 |
. . . . 5
⊢ ((Fun
(𝑆 D 𝐹) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(𝑆 D 𝐹)𝐵)) |
| 75 | 73, 65, 74 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (((𝑆 D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(𝑆 D 𝐹)𝐵)) |
| 76 | 63, 75 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = 𝐵) |
| 77 | | fvconst2g 5776 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
| 78 | 38, 77 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵) |
| 79 | 76, 78 | eqtr4d 2232 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑋 × {𝐵})‘𝑥)) |
| 80 | 69, 71, 79 | eqfnfvd 5662 |
1
⊢ (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵})) |