ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvidsslem GIF version

Theorem dvidsslem 15209
Description: Lemma for dvconstss 15214. Analogue of dvidlemap 15207 where 𝐹 is defined on an open subset of the real or complex numbers. (Contributed by Jim Kingdon, 3-Oct-2025.)
Hypotheses
Ref Expression
dvidsslem.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvidsslem.j 𝐽 = (𝐾t 𝑆)
dvidsslem.k 𝐾 = (MetOpen‘(abs ∘ − ))
dvidsslem.1 (𝜑𝐹:𝑋⟶ℂ)
dvidsslem.x (𝜑𝑋𝐽)
dvidsslem.2 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
dvidsslem.3 𝐵 ∈ ℂ
Assertion
Ref Expression
dvidsslem (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐹,𝑧   𝜑,𝑥,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋,𝑧
Allowed substitution hints:   𝐽(𝑥,𝑧)   𝐾(𝑥,𝑧)

Proof of Theorem dvidsslem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dvidsslem.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 ssidd 3215 . . . . . . 7 (𝜑 → ℂ ⊆ ℂ)
3 dvidsslem.j . . . . . . . . . 10 𝐽 = (𝐾t 𝑆)
4 restsspw 13125 . . . . . . . . . 10 (𝐾t 𝑆) ⊆ 𝒫 𝑆
53, 4eqsstri 3226 . . . . . . . . 9 𝐽 ⊆ 𝒫 𝑆
6 dvidsslem.x . . . . . . . . 9 (𝜑𝑋𝐽)
75, 6sselid 3192 . . . . . . . 8 (𝜑𝑋 ∈ 𝒫 𝑆)
87elpwid 3628 . . . . . . 7 (𝜑𝑋𝑆)
9 cnex 8056 . . . . . . . 8 ℂ ∈ V
109a1i 9 . . . . . . 7 (𝜑 → ℂ ∈ V)
11 pmss12g 6769 . . . . . . 7 (((ℂ ⊆ ℂ ∧ 𝑋𝑆) ∧ (ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ})) → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
122, 8, 10, 1, 11syl22anc 1251 . . . . . 6 (𝜑 → (ℂ ↑pm 𝑋) ⊆ (ℂ ↑pm 𝑆))
13 dvidsslem.1 . . . . . . 7 (𝜑𝐹:𝑋⟶ℂ)
14 fpmg 6768 . . . . . . 7 ((𝑋𝐽 ∧ ℂ ∈ V ∧ 𝐹:𝑋⟶ℂ) → 𝐹 ∈ (ℂ ↑pm 𝑋))
156, 10, 13, 14syl3anc 1250 . . . . . 6 (𝜑𝐹 ∈ (ℂ ↑pm 𝑋))
1612, 15sseldd 3195 . . . . 5 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
17 dvfgg 15204 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
181, 16, 17syl2anc 411 . . . 4 (𝜑 → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
19 recnprss 15203 . . . . . . . 8 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
201, 19syl 14 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
2120, 13, 8dvbss 15201 . . . . . 6 (𝜑 → dom (𝑆 D 𝐹) ⊆ 𝑋)
22 reldvg 15195 . . . . . . . . 9 ((𝑆 ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) → Rel (𝑆 D 𝐹))
2320, 16, 22syl2anc 411 . . . . . . . 8 (𝜑 → Rel (𝑆 D 𝐹))
2423adantr 276 . . . . . . 7 ((𝜑𝑥𝑋) → Rel (𝑆 D 𝐹))
25 dvidsslem.k . . . . . . . . . . . . . . . 16 𝐾 = (MetOpen‘(abs ∘ − ))
2625cntoptop 15049 . . . . . . . . . . . . . . 15 𝐾 ∈ Top
2726a1i 9 . . . . . . . . . . . . . 14 (𝜑𝐾 ∈ Top)
28 resttop 14686 . . . . . . . . . . . . . 14 ((𝐾 ∈ Top ∧ 𝑆 ∈ {ℝ, ℂ}) → (𝐾t 𝑆) ∈ Top)
2927, 1, 28syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → (𝐾t 𝑆) ∈ Top)
303, 29eqeltrid 2293 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
31 isopn3i 14651 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑋𝐽) → ((int‘𝐽)‘𝑋) = 𝑋)
3230, 6, 31syl2anc 411 . . . . . . . . . . 11 (𝜑 → ((int‘𝐽)‘𝑋) = 𝑋)
3332eqcomd 2212 . . . . . . . . . 10 (𝜑𝑋 = ((int‘𝐽)‘𝑋))
3433eleq2d 2276 . . . . . . . . 9 (𝜑 → (𝑥𝑋𝑥 ∈ ((int‘𝐽)‘𝑋)))
3534biimpa 296 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝑥 ∈ ((int‘𝐽)‘𝑋))
36 limcresi 15182 . . . . . . . . . 10 ((𝑧𝑋𝐵) lim 𝑥) ⊆ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥)
37 dvidsslem.3 . . . . . . . . . . . . . 14 𝐵 ∈ ℂ
3837a1i 9 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℂ)
398, 20sstrd 3204 . . . . . . . . . . . . 13 (𝜑𝑋 ⊆ ℂ)
40 cncfmptc 15112 . . . . . . . . . . . . 13 ((𝐵 ∈ ℂ ∧ 𝑋 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4138, 39, 2, 40syl3anc 1250 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
4241adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧𝑋𝐵) ∈ (𝑋cn→ℂ))
43 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝑥𝑋)
44 eqidd 2207 . . . . . . . . . . 11 (𝑧 = 𝑥𝐵 = 𝐵)
4542, 43, 44cnmptlimc 15190 . . . . . . . . . 10 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧𝑋𝐵) lim 𝑥))
4636, 45sselid 3192 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐵 ∈ (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
47 breq1 4050 . . . . . . . . . . . . . 14 (𝑤 = 𝑧 → (𝑤 # 𝑥𝑧 # 𝑥))
4847elrab 2930 . . . . . . . . . . . . 13 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↔ (𝑧𝑋𝑧 # 𝑥))
49 dvidsslem.2 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑋𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
50493exp2 1228 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝑋 → (𝑧𝑋 → (𝑧 # 𝑥 → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵))))
5150imp43 355 . . . . . . . . . . . . 13 (((𝜑𝑥𝑋) ∧ (𝑧𝑋𝑧 # 𝑥)) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5248, 51sylan2b 287 . . . . . . . . . . . 12 (((𝜑𝑥𝑋) ∧ 𝑧 ∈ {𝑤𝑋𝑤 # 𝑥}) → (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)) = 𝐵)
5352mpteq2dva 4138 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
54 ssrab2 3279 . . . . . . . . . . . 12 {𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋
55 resmpt 5012 . . . . . . . . . . . 12 ({𝑤𝑋𝑤 # 𝑥} ⊆ 𝑋 → ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵))
5654, 55ax-mp 5 . . . . . . . . . . 11 ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ 𝐵)
5753, 56eqtr4di 2257 . . . . . . . . . 10 ((𝜑𝑥𝑋) → (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = ((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}))
5857oveq1d 5966 . . . . . . . . 9 ((𝜑𝑥𝑋) → ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥) = (((𝑧𝑋𝐵) ↾ {𝑤𝑋𝑤 # 𝑥}) lim 𝑥))
5946, 58eleqtrrd 2286 . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))
60 eqid 2206 . . . . . . . . . 10 (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) = (𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥)))
613, 25, 60, 20, 13, 8eldvap 15198 . . . . . . . . 9 (𝜑 → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6261adantr 276 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑥(𝑆 D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘𝐽)‘𝑋) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤𝑋𝑤 # 𝑥} ↦ (((𝐹𝑧) − (𝐹𝑥)) / (𝑧𝑥))) lim 𝑥))))
6335, 59, 62mpbir2and 947 . . . . . . 7 ((𝜑𝑥𝑋) → 𝑥(𝑆 D 𝐹)𝐵)
64 releldm 4918 . . . . . . 7 ((Rel (𝑆 D 𝐹) ∧ 𝑥(𝑆 D 𝐹)𝐵) → 𝑥 ∈ dom (𝑆 D 𝐹))
6524, 63, 64syl2anc 411 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ dom (𝑆 D 𝐹))
6621, 65eqelssd 3213 . . . . 5 (𝜑 → dom (𝑆 D 𝐹) = 𝑋)
6766feq2d 5419 . . . 4 (𝜑 → ((𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ ↔ (𝑆 D 𝐹):𝑋⟶ℂ))
6818, 67mpbid 147 . . 3 (𝜑 → (𝑆 D 𝐹):𝑋⟶ℂ)
6968ffnd 5432 . 2 (𝜑 → (𝑆 D 𝐹) Fn 𝑋)
70 fnconstg 5480 . . 3 (𝐵 ∈ ℂ → (𝑋 × {𝐵}) Fn 𝑋)
7137, 70mp1i 10 . 2 (𝜑 → (𝑋 × {𝐵}) Fn 𝑋)
7218adantr 276 . . . . . 6 ((𝜑𝑥𝑋) → (𝑆 D 𝐹):dom (𝑆 D 𝐹)⟶ℂ)
7372ffund 5435 . . . . 5 ((𝜑𝑥𝑋) → Fun (𝑆 D 𝐹))
74 funbrfvb 5628 . . . . 5 ((Fun (𝑆 D 𝐹) ∧ 𝑥 ∈ dom (𝑆 D 𝐹)) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7573, 65, 74syl2anc 411 . . . 4 ((𝜑𝑥𝑋) → (((𝑆 D 𝐹)‘𝑥) = 𝐵𝑥(𝑆 D 𝐹)𝐵))
7663, 75mpbird 167 . . 3 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = 𝐵)
77 fvconst2g 5805 . . . 4 ((𝐵 ∈ ℂ ∧ 𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7838, 77sylan 283 . . 3 ((𝜑𝑥𝑋) → ((𝑋 × {𝐵})‘𝑥) = 𝐵)
7976, 78eqtr4d 2242 . 2 ((𝜑𝑥𝑋) → ((𝑆 D 𝐹)‘𝑥) = ((𝑋 × {𝐵})‘𝑥))
8069, 71, 79eqfnfvd 5687 1 (𝜑 → (𝑆 D 𝐹) = (𝑋 × {𝐵}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  {crab 2489  Vcvv 2773  wss 3167  𝒫 cpw 3617  {csn 3634  {cpr 3635   class class class wbr 4047  cmpt 4109   × cxp 4677  dom cdm 4679  cres 4681  ccom 4683  Rel wrel 4684  Fun wfun 5270   Fn wfn 5271  wf 5272  cfv 5276  (class class class)co 5951  pm cpm 6743  cc 7930  cr 7931  cmin 8250   # cap 8661   / cdiv 8752  abscabs 11352  t crest 13115  MetOpencmopn 14347  Topctop 14513  intcnt 14609  cnccncf 15086   lim climc 15170   D cdv 15171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pm 6745  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-rest 13117  df-topgen 13136  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-top 14514  df-topon 14527  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-cncf 15087  df-limced 15172  df-dvap 15173
This theorem is referenced by:  dvconstss  15214
  Copyright terms: Public domain W3C validator