| Step | Hyp | Ref
| Expression |
| 1 | | dvidrelem.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℂ) |
| 2 | | reex 8013 |
. . . . . . 7
⊢ ℝ
∈ V |
| 3 | | cnex 8003 |
. . . . . . 7
⊢ ℂ
∈ V |
| 4 | 2, 3 | fpm 6740 |
. . . . . 6
⊢ (𝐹:ℝ⟶ℂ →
𝐹 ∈ (ℂ
↑pm ℝ)) |
| 5 | 1, 4 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (ℂ ↑pm
ℝ)) |
| 6 | | dvfpm 14925 |
. . . . 5
⊢ (𝐹 ∈ (ℂ
↑pm ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| 7 | 5, 6 | syl 14 |
. . . 4
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| 8 | | ax-resscn 7971 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
| 9 | 8 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 10 | | ssidd 3204 |
. . . . . . 7
⊢ (𝜑 → ℝ ⊆
ℝ) |
| 11 | 9, 1, 10 | dvbss 14921 |
. . . . . 6
⊢ (𝜑 → dom (ℝ D 𝐹) ⊆
ℝ) |
| 12 | | reldvg 14915 |
. . . . . . . . 9
⊢ ((ℝ
⊆ ℂ ∧ 𝐹
∈ (ℂ ↑pm ℝ)) → Rel (ℝ D
𝐹)) |
| 13 | 9, 5, 12 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → Rel (ℝ D 𝐹)) |
| 14 | 13 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Rel (ℝ D 𝐹)) |
| 15 | | simpr 110 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
| 16 | | retop 14760 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) ∈ Top |
| 17 | | uniretop 14761 |
. . . . . . . . . . 11
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 18 | 17 | ntrtop 14364 |
. . . . . . . . . 10
⊢
((topGen‘ran (,)) ∈ Top → ((int‘(topGen‘ran
(,)))‘ℝ) = ℝ) |
| 19 | 16, 18 | ax-mp 5 |
. . . . . . . . 9
⊢
((int‘(topGen‘ran (,)))‘ℝ) =
ℝ |
| 20 | 15, 19 | eleqtrrdi 2290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ((int‘(topGen‘ran
(,)))‘ℝ)) |
| 21 | | limcresi 14902 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ ℝ ↦ 𝐵) limℂ 𝑥) ⊆ (((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) limℂ 𝑥) |
| 22 | | dvidrelem.3 |
. . . . . . . . . . . 12
⊢ 𝐵 ∈ ℂ |
| 23 | | ssidd 3204 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ℂ ⊆
ℂ) |
| 24 | | cncfmptc 14832 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℂ ∧ ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑧 ∈ ℝ ↦ 𝐵) ∈ (ℝ–cn→ℂ)) |
| 25 | 22, 8, 23, 24 | mp3an12i 1352 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ ℝ ↦ 𝐵) ∈ (ℝ–cn→ℂ)) |
| 26 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → 𝐵 = 𝐵) |
| 27 | 25, 15, 26 | cnmptlimc 14910 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ((𝑧 ∈ ℝ ↦ 𝐵) limℂ 𝑥)) |
| 28 | 21, 27 | sselid 3181 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 29 | | breq1 4036 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → (𝑤 # 𝑥 ↔ 𝑧 # 𝑥)) |
| 30 | 29 | elrab 2920 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↔ (𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) |
| 31 | | dvidrelem.2 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 32 | 31 | 3exp2 1227 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ ℝ → (𝑧 ∈ ℝ → (𝑧 # 𝑥 → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵)))) |
| 33 | 32 | imp43 355 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∧ 𝑧 # 𝑥)) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 34 | 30, 33 | sylan2b 287 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) → (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥)) = 𝐵) |
| 35 | 34 | mpteq2dva 4123 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 36 | | ssrab2 3268 |
. . . . . . . . . . . 12
⊢ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ⊆ ℝ |
| 37 | | resmpt 4994 |
. . . . . . . . . . . 12
⊢ ({𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ⊆ ℝ → ((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ 𝐵)) |
| 38 | 36, 37 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) = (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ 𝐵) |
| 39 | 35, 38 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = ((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥})) |
| 40 | 39 | oveq1d 5937 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥) = (((𝑧 ∈ ℝ ↦ 𝐵) ↾ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥}) limℂ 𝑥)) |
| 41 | 28, 40 | eleqtrrd 2276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)) |
| 42 | | eqid 2196 |
. . . . . . . . . 10
⊢
(MetOpen‘(abs ∘ − )) = (MetOpen‘(abs ∘
− )) |
| 43 | 42 | tgioo2cntop 14793 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((MetOpen‘(abs ∘ − ))
↾t ℝ) |
| 44 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) = (𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) |
| 45 | 8 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ℝ ⊆
ℂ) |
| 46 | 1 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐹:ℝ⟶ℂ) |
| 47 | | ssidd 3204 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ℝ ⊆
ℝ) |
| 48 | 43, 42, 44, 45, 46, 47 | eldvap 14918 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑥(ℝ D 𝐹)𝐵 ↔ (𝑥 ∈ ((int‘(topGen‘ran
(,)))‘ℝ) ∧ 𝐵 ∈ ((𝑧 ∈ {𝑤 ∈ ℝ ∣ 𝑤 # 𝑥} ↦ (((𝐹‘𝑧) − (𝐹‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥)))) |
| 49 | 20, 41, 48 | mpbir2and 946 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥(ℝ D 𝐹)𝐵) |
| 50 | | releldm 4901 |
. . . . . . 7
⊢ ((Rel
(ℝ D 𝐹) ∧ 𝑥(ℝ D 𝐹)𝐵) → 𝑥 ∈ dom (ℝ D 𝐹)) |
| 51 | 14, 49, 50 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ dom (ℝ D 𝐹)) |
| 52 | 11, 51 | eqelssd 3202 |
. . . . 5
⊢ (𝜑 → dom (ℝ D 𝐹) = ℝ) |
| 53 | 52 | feq2d 5395 |
. . . 4
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ ↔ (ℝ
D 𝐹):ℝ⟶ℂ)) |
| 54 | 7, 53 | mpbid 147 |
. . 3
⊢ (𝜑 → (ℝ D 𝐹):ℝ⟶ℂ) |
| 55 | 54 | ffnd 5408 |
. 2
⊢ (𝜑 → (ℝ D 𝐹) Fn ℝ) |
| 56 | | fnconstg 5455 |
. . 3
⊢ (𝐵 ∈ ℂ → (ℝ
× {𝐵}) Fn
ℝ) |
| 57 | 22, 56 | mp1i 10 |
. 2
⊢ (𝜑 → (ℝ × {𝐵}) Fn ℝ) |
| 58 | 7 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℂ) |
| 59 | 58 | ffund 5411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → Fun (ℝ D 𝐹)) |
| 60 | | funbrfvb 5603 |
. . . . 5
⊢ ((Fun
(ℝ D 𝐹) ∧ 𝑥 ∈ dom (ℝ D 𝐹)) → (((ℝ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℝ D 𝐹)𝐵)) |
| 61 | 59, 51, 60 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (((ℝ D 𝐹)‘𝑥) = 𝐵 ↔ 𝑥(ℝ D 𝐹)𝐵)) |
| 62 | 49, 61 | mpbird 167 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) = 𝐵) |
| 63 | 22 | a1i 9 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 64 | | fvconst2g 5776 |
. . . 4
⊢ ((𝐵 ∈ ℂ ∧ 𝑥 ∈ ℝ) →
((ℝ × {𝐵})‘𝑥) = 𝐵) |
| 65 | 63, 64 | sylan 283 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ ×
{𝐵})‘𝑥) = 𝐵) |
| 66 | 62, 65 | eqtr4d 2232 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((ℝ D 𝐹)‘𝑥) = ((ℝ × {𝐵})‘𝑥)) |
| 67 | 55, 57, 66 | eqfnfvd 5662 |
1
⊢ (𝜑 → (ℝ D 𝐹) = (ℝ × {𝐵})) |