| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsplusgval | GIF version | ||
| Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| pwsplusgval.a | ⊢ + = (+g‘𝑅) |
| pwsplusgval.p | ⊢ ✚ = (+g‘𝑌) |
| Ref | Expression |
|---|---|
| pwsplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | eqid 2209 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 3 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | scaslid 13152 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 13025 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) |
| 6 | 3, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) |
| 7 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 8 | fnconstg 5499 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 9 | 3, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 10 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 11 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 12 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 13 | eqid 2209 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 14 | 12, 13 | pwsval 13290 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 15 | 3, 7, 14 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 16 | 15 | fveq2d 5607 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 17 | 11, 16 | eqtrid 2254 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 18 | 10, 17 | eleqtrd 2288 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 20 | 19, 17 | eleqtrd 2288 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 21 | eqid 2209 | . . . 4 ⊢ (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 22 | 1, 2, 6, 7, 9, 18, 20, 21 | prdsplusgval 13282 | . . 3 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
| 23 | fvconst2g 5826 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 24 | 3, 23 | sylan 283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 25 | 24 | fveq2d 5607 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g‘𝑅)) |
| 26 | pwsplusgval.a | . . . . . 6 ⊢ + = (+g‘𝑅) | |
| 27 | 25, 26 | eqtr4di 2260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + ) |
| 28 | 27 | oveqd 5991 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 29 | 28 | mpteq2dva 4153 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 30 | 22, 29 | eqtrd 2242 | . 2 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 31 | pwsplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
| 32 | 15 | fveq2d 5607 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 33 | 31, 32 | eqtrid 2254 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 34 | 33 | oveqd 5991 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
| 35 | fvexg 5622 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 36 | 10, 35 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) |
| 37 | fvexg 5622 | . . . 4 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
| 38 | 19, 37 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) |
| 39 | eqid 2209 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 40 | 12, 39, 11, 3, 7, 10 | pwselbas 13293 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
| 41 | 40 | feqmptd 5660 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 42 | 12, 39, 11, 3, 7, 19 | pwselbas 13293 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
| 43 | 42 | feqmptd 5660 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
| 44 | 7, 36, 38, 41, 43 | offval2 6204 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 45 | 30, 34, 44 | 3eqtr4d 2252 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∈ wcel 2180 Vcvv 2779 {csn 3646 ↦ cmpt 4124 × cxp 4694 Fn wfn 5289 ‘cfv 5294 (class class class)co 5974 ∘𝑓 cof 6186 Basecbs 12998 +gcplusg 13076 Scalarcsca 13079 Xscprds 13264 ↑s cpws 13265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-map 6767 df-ixp 6816 df-sup 7119 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-fz 10173 df-struct 13000 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-mulr 13090 df-sca 13092 df-vsca 13093 df-ip 13094 df-tset 13095 df-ple 13096 df-ds 13098 df-hom 13100 df-cco 13101 df-rest 13240 df-topn 13241 df-topgen 13259 df-pt 13260 df-prds 13266 df-pws 13289 |
| This theorem is referenced by: pwssub 13612 psrgrp 14614 |
| Copyright terms: Public domain | W3C validator |