ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwsmulrval GIF version

Theorem pwsmulrval 13337
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsmulrval.a · = (.r𝑅)
pwsmulrval.p = (.r𝑌)
Assertion
Ref Expression
pwsmulrval (𝜑 → (𝐹 𝐺) = (𝐹𝑓 · 𝐺))

Proof of Theorem pwsmulrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2229 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
4 scaslid 13194 . . . . . 6 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
54slotex 13067 . . . . 5 (𝑅𝑉 → (Scalar‘𝑅) ∈ V)
63, 5syl 14 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
7 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
8 fnconstg 5525 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
93, 8syl 14 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
10 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
11 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
12 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
13 eqid 2229 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1412, 13pwsval 13332 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
153, 7, 14syl2anc 411 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1615fveq2d 5633 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1711, 16eqtrid 2274 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1810, 17eleqtrd 2308 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
2019, 17eleqtrd 2308 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
21 eqid 2229 . . . 4 (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
221, 2, 6, 7, 9, 18, 20, 21prdsmulrval 13326 . . 3 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
23 fvconst2g 5857 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
243, 23sylan 283 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2524fveq2d 5633 . . . . . 6 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r𝑅))
26 pwsmulrval.a . . . . . 6 · = (.r𝑅)
2725, 26eqtr4di 2280 . . . . 5 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · )
2827oveqd 6024 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) · (𝐺𝑥)))
2928mpteq2dva 4174 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
3022, 29eqtrd 2262 . 2 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
31 pwsmulrval.p . . . 4 = (.r𝑌)
3215fveq2d 5633 . . . 4 (𝜑 → (.r𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3331, 32eqtrid 2274 . . 3 (𝜑 = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3433oveqd 6024 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
35 fvexg 5648 . . . 4 ((𝐹𝐵𝑥𝐼) → (𝐹𝑥) ∈ V)
3610, 35sylan 283 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
37 fvexg 5648 . . . 4 ((𝐺𝐵𝑥𝐼) → (𝐺𝑥) ∈ V)
3819, 37sylan 283 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
39 eqid 2229 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
4012, 39, 11, 3, 7, 10pwselbas 13335 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
4140feqmptd 5689 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
4212, 39, 11, 3, 7, 19pwselbas 13335 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
4342feqmptd 5689 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
447, 36, 38, 41, 43offval2 6240 . 2 (𝜑 → (𝐹𝑓 · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
4530, 34, 443eqtr4d 2272 1 (𝜑 → (𝐹 𝐺) = (𝐹𝑓 · 𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666  cmpt 4145   × cxp 4717   Fn wfn 5313  cfv 5318  (class class class)co 6007  𝑓 cof 6222  Basecbs 13040  .rcmulr 13119  Scalarcsca 13121  Xscprds 13306  s cpws 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-tset 13137  df-ple 13138  df-ds 13140  df-hom 13142  df-cco 13143  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-prds 13308  df-pws 13331
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator