| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwsmulrval | GIF version | ||
| Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| pwsmulrval.a | ⊢ · = (.r‘𝑅) |
| pwsmulrval.p | ⊢ ∙ = (.r‘𝑌) |
| Ref | Expression |
|---|---|
| pwsmulrval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘𝑓 · 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | eqid 2196 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 3 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 4 | scaslid 12855 | . . . . . 6 ⊢ (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ) | |
| 5 | 4 | slotex 12730 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (Scalar‘𝑅) ∈ V) |
| 6 | 3, 5 | syl 14 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) |
| 7 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 8 | fnconstg 5458 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 9 | 3, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 10 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 11 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 12 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 13 | eqid 2196 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 14 | 12, 13 | pwsval 12993 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 15 | 3, 7, 14 | syl2anc 411 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 16 | 15 | fveq2d 5565 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 17 | 11, 16 | eqtrid 2241 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 18 | 10, 17 | eleqtrd 2275 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 20 | 19, 17 | eleqtrd 2275 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 21 | eqid 2196 | . . . 4 ⊢ (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 22 | 1, 2, 6, 7, 9, 18, 20, 21 | prdsmulrval 12987 | . . 3 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
| 23 | fvconst2g 5779 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 24 | 3, 23 | sylan 283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 25 | 24 | fveq2d 5565 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r‘𝑅)) |
| 26 | pwsmulrval.a | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 27 | 25, 26 | eqtr4di 2247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · ) |
| 28 | 27 | oveqd 5942 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
| 29 | 28 | mpteq2dva 4124 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 30 | 22, 29 | eqtrd 2229 | . 2 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 31 | pwsmulrval.p | . . . 4 ⊢ ∙ = (.r‘𝑌) | |
| 32 | 15 | fveq2d 5565 | . . . 4 ⊢ (𝜑 → (.r‘𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 33 | 31, 32 | eqtrid 2241 | . . 3 ⊢ (𝜑 → ∙ = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 34 | 33 | oveqd 5942 | . 2 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
| 35 | fvexg 5580 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 36 | 10, 35 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) |
| 37 | fvexg 5580 | . . . 4 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
| 38 | 19, 37 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) |
| 39 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 40 | 12, 39, 11, 3, 7, 10 | pwselbas 12996 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
| 41 | 40 | feqmptd 5617 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 42 | 12, 39, 11, 3, 7, 19 | pwselbas 12996 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
| 43 | 42 | feqmptd 5617 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
| 44 | 7, 36, 38, 41, 43 | offval2 6155 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 45 | 30, 34, 44 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘𝑓 · 𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {csn 3623 ↦ cmpt 4095 × cxp 4662 Fn wfn 5254 ‘cfv 5259 (class class class)co 5925 ∘𝑓 cof 6137 Basecbs 12703 .rcmulr 12781 Scalarcsca 12783 Xscprds 12967 ↑s cpws 12968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-of 6139 df-1st 6207 df-2nd 6208 df-map 6718 df-ixp 6767 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-7 9071 df-8 9072 df-9 9073 df-n0 9267 df-z 9344 df-dec 9475 df-uz 9619 df-fz 10101 df-struct 12705 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-ip 12798 df-tset 12799 df-ple 12800 df-ds 12802 df-hom 12804 df-cco 12805 df-rest 12943 df-topn 12944 df-topgen 12962 df-pt 12963 df-prds 12969 df-pws 12992 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |