ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq3 GIF version

Theorem seqfeq3 10447
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m (𝜑𝑀 ∈ ℤ)
seqfeq3.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqfeq3.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq3.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq3 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2165 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seqfeq3.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seqfeq3.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4 seqfeq3.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
51, 2, 3, 4seqf 10396 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
65ffnd 5338 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
7 seqfeq3.id . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
87, 4eqeltrrd 2244 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
91, 2, 3, 8seqf 10396 . . 3 (𝜑 → seq𝑀(𝑄, 𝐹):(ℤ𝑀)⟶𝑆)
109ffnd 5338 . 2 (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
115ffvelrnda 5620 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆)
12 fvi 5543 . . . 4 ((seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆 → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
1311, 12syl 14 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
144adantlr 469 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
153adantlr 469 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
16 simpr 109 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
177adantlr 469 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
18 fvi 5543 . . . . . 6 ((𝑥 + 𝑦) ∈ 𝑆 → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
1914, 18syl 14 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
20 fvi 5543 . . . . . . 7 (𝑥𝑆 → ( I ‘𝑥) = 𝑥)
2120ad2antrl 482 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑥) = 𝑥)
22 fvi 5543 . . . . . . 7 (𝑦𝑆 → ( I ‘𝑦) = 𝑦)
2322ad2antll 483 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑦) = 𝑦)
2421, 23oveq12d 5860 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦))
2517, 19, 243eqtr4d 2208 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
26 fvi 5543 . . . . 5 ((𝐹𝑥) ∈ 𝑆 → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
2715, 26syl 14 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
288adantlr 469 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
2914, 15, 16, 25, 27, 15, 28seq3homo 10445 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀(𝑄, 𝐹)‘𝑎))
3013, 29eqtr3d 2200 . 2 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎))
316, 10, 30eqfnfvd 5586 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   I cid 4266  cfv 5188  (class class class)co 5842  cz 9191  cuz 9466  seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator