| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seqfeq3 | GIF version | ||
| Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| seqfeq3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| seqfeq3.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | 
| seqfeq3.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| seqfeq3.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | 
| Ref | Expression | 
|---|---|
| seqfeq3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 2 | seqfeq3.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | seqfeq3.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
| 4 | seqfeq3.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | seqf 10556 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) | 
| 6 | 5 | ffnd 5408 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | 
| 7 | seqfeq3.id | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
| 8 | 7, 4 | eqeltrrd 2274 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) | 
| 9 | 1, 2, 3, 8 | seqf 10556 | . . 3 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹):(ℤ≥‘𝑀)⟶𝑆) | 
| 10 | 9 | ffnd 5408 | . 2 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) | 
| 11 | 5 | ffvelcdmda 5697 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆) | 
| 12 | fvi 5618 | . . . 4 ⊢ ((seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆 → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎)) | |
| 13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎)) | 
| 14 | 4 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 15 | 3 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | 
| 16 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) | |
| 17 | 7 | adantlr 477 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | 
| 18 | fvi 5618 | . . . . . 6 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) | |
| 19 | 14, 18 | syl 14 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) | 
| 20 | fvi 5618 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → ( I ‘𝑥) = 𝑥) | |
| 21 | 20 | ad2antrl 490 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘𝑥) = 𝑥) | 
| 22 | fvi 5618 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → ( I ‘𝑦) = 𝑦) | |
| 23 | 22 | ad2antll 491 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘𝑦) = 𝑦) | 
| 24 | 21, 23 | oveq12d 5940 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦)) | 
| 25 | 17, 19, 24 | 3eqtr4d 2239 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦))) | 
| 26 | fvi 5618 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ 𝑆 → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) | |
| 27 | 15, 26 | syl 14 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) | 
| 28 | 8 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) | 
| 29 | 14, 15, 16, 25, 27, 15, 28 | seq3homo 10619 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀(𝑄, 𝐹)‘𝑎)) | 
| 30 | 13, 29 | eqtr3d 2231 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎)) | 
| 31 | 6, 10, 30 | eqfnfvd 5662 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 I cid 4323 ‘cfv 5258 (class class class)co 5922 ℤcz 9326 ℤ≥cuz 9601 seqcseq 10539 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 | 
| This theorem is referenced by: mulgpropdg 13294 | 
| Copyright terms: Public domain | W3C validator |