ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq3 GIF version

Theorem seqfeq3 10655
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m (𝜑𝑀 ∈ ℤ)
seqfeq3.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqfeq3.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq3.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq3 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2204 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seqfeq3.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seqfeq3.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4 seqfeq3.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
51, 2, 3, 4seqf 10590 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
65ffnd 5420 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
7 seqfeq3.id . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
87, 4eqeltrrd 2282 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
91, 2, 3, 8seqf 10590 . . 3 (𝜑 → seq𝑀(𝑄, 𝐹):(ℤ𝑀)⟶𝑆)
109ffnd 5420 . 2 (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
115ffvelcdmda 5709 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆)
12 fvi 5630 . . . 4 ((seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆 → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
1311, 12syl 14 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
144adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
153adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
16 simpr 110 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
177adantlr 477 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
18 fvi 5630 . . . . . 6 ((𝑥 + 𝑦) ∈ 𝑆 → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
1914, 18syl 14 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
20 fvi 5630 . . . . . . 7 (𝑥𝑆 → ( I ‘𝑥) = 𝑥)
2120ad2antrl 490 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑥) = 𝑥)
22 fvi 5630 . . . . . . 7 (𝑦𝑆 → ( I ‘𝑦) = 𝑦)
2322ad2antll 491 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑦) = 𝑦)
2421, 23oveq12d 5952 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦))
2517, 19, 243eqtr4d 2247 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
26 fvi 5630 . . . . 5 ((𝐹𝑥) ∈ 𝑆 → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
2715, 26syl 14 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
288adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
2914, 15, 16, 25, 27, 15, 28seq3homo 10653 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀(𝑄, 𝐹)‘𝑎))
3013, 29eqtr3d 2239 . 2 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎))
316, 10, 30eqfnfvd 5674 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   I cid 4333  cfv 5268  (class class class)co 5934  cz 9354  cuz 9630  seqcseq 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631  df-seqfrec 10574
This theorem is referenced by:  mulgpropdg  13418
  Copyright terms: Public domain W3C validator