ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfeq3 GIF version

Theorem seqfeq3 10621
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m (𝜑𝑀 ∈ ℤ)
seqfeq3.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqfeq3.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq3.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq3 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . 4 (ℤ𝑀) = (ℤ𝑀)
2 seqfeq3.m . . . 4 (𝜑𝑀 ∈ ℤ)
3 seqfeq3.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4 seqfeq3.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
51, 2, 3, 4seqf 10556 . . 3 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
65ffnd 5408 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
7 seqfeq3.id . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
87, 4eqeltrrd 2274 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
91, 2, 3, 8seqf 10556 . . 3 (𝜑 → seq𝑀(𝑄, 𝐹):(ℤ𝑀)⟶𝑆)
109ffnd 5408 . 2 (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
115ffvelcdmda 5697 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆)
12 fvi 5618 . . . 4 ((seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆 → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
1311, 12syl 14 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎))
144adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
153adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
16 simpr 110 . . . 4 ((𝜑𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
177adantlr 477 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
18 fvi 5618 . . . . . 6 ((𝑥 + 𝑦) ∈ 𝑆 → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
1914, 18syl 14 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
20 fvi 5618 . . . . . . 7 (𝑥𝑆 → ( I ‘𝑥) = 𝑥)
2120ad2antrl 490 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑥) = 𝑥)
22 fvi 5618 . . . . . . 7 (𝑦𝑆 → ( I ‘𝑦) = 𝑦)
2322ad2antll 491 . . . . . 6 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘𝑦) = 𝑦)
2421, 23oveq12d 5940 . . . . 5 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦))
2517, 19, 243eqtr4d 2239 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
26 fvi 5618 . . . . 5 ((𝐹𝑥) ∈ 𝑆 → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
2715, 26syl 14 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
288adantlr 477 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
2914, 15, 16, 25, 27, 15, 28seq3homo 10619 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀(𝑄, 𝐹)‘𝑎))
3013, 29eqtr3d 2231 . 2 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎))
316, 10, 30eqfnfvd 5662 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   I cid 4323  cfv 5258  (class class class)co 5922  cz 9326  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by:  mulgpropdg  13294
  Copyright terms: Public domain W3C validator