![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqfeq3 | GIF version |
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
seqfeq3.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqfeq3.f | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
seqfeq3.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
seqfeq3.id | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
Ref | Expression |
---|---|
seqfeq3 | ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2113 | . . . 4 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
2 | seqfeq3.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | seqfeq3.f | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) | |
4 | seqfeq3.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
5 | 1, 2, 3, 4 | seqf 10121 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
6 | 5 | ffnd 5229 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
7 | seqfeq3.id | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) | |
8 | 7, 4 | eqeltrrd 2190 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
9 | 1, 2, 3, 8 | seqf 10121 | . . 3 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
10 | 9 | ffnd 5229 | . 2 ⊢ (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ≥‘𝑀)) |
11 | 5 | ffvelrnda 5507 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆) |
12 | fvi 5430 | . . . 4 ⊢ ((seq𝑀( + , 𝐹)‘𝑎) ∈ 𝑆 → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎)) | |
13 | 11, 12 | syl 14 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀( + , 𝐹)‘𝑎)) |
14 | 4 | adantlr 466 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
15 | 3 | adantlr 466 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
16 | simpr 109 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → 𝑎 ∈ (ℤ≥‘𝑀)) | |
17 | 7 | adantlr 466 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦)) |
18 | fvi 5430 | . . . . . 6 ⊢ ((𝑥 + 𝑦) ∈ 𝑆 → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) | |
19 | 14, 18 | syl 14 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)) |
20 | fvi 5430 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑆 → ( I ‘𝑥) = 𝑥) | |
21 | 20 | ad2antrl 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘𝑥) = 𝑥) |
22 | fvi 5430 | . . . . . . 7 ⊢ (𝑦 ∈ 𝑆 → ( I ‘𝑦) = 𝑦) | |
23 | 22 | ad2antll 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘𝑦) = 𝑦) |
24 | 21, 23 | oveq12d 5744 | . . . . 5 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦)) |
25 | 17, 19, 24 | 3eqtr4d 2155 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦))) |
26 | fvi 5430 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ 𝑆 → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) | |
27 | 15, 26 | syl 14 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → ( I ‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
28 | 8 | adantlr 466 | . . . 4 ⊢ (((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
29 | 14, 15, 16, 25, 27, 15, 28 | seq3homo 10170 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → ( I ‘(seq𝑀( + , 𝐹)‘𝑎)) = (seq𝑀(𝑄, 𝐹)‘𝑎)) |
30 | 13, 29 | eqtr3d 2147 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎)) |
31 | 6, 10, 30 | eqfnfvd 5473 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1312 ∈ wcel 1461 I cid 4168 ‘cfv 5079 (class class class)co 5726 ℤcz 8952 ℤ≥cuz 9222 seqcseq 10105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 ax-cnex 7630 ax-resscn 7631 ax-1cn 7632 ax-1re 7633 ax-icn 7634 ax-addcl 7635 ax-addrcl 7636 ax-mulcl 7637 ax-addcom 7639 ax-addass 7641 ax-distr 7643 ax-i2m1 7644 ax-0lt1 7645 ax-0id 7647 ax-rnegex 7648 ax-cnre 7650 ax-pre-ltirr 7651 ax-pre-ltwlin 7652 ax-pre-lttrn 7653 ax-pre-ltadd 7655 |
This theorem depends on definitions: df-bi 116 df-3or 944 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-nel 2376 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-ilim 4249 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-riota 5682 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-frec 6240 df-pnf 7720 df-mnf 7721 df-xr 7722 df-ltxr 7723 df-le 7724 df-sub 7852 df-neg 7853 df-inn 8625 df-n0 8876 df-z 8953 df-uz 9223 df-seqfrec 10106 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |