ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facp1 GIF version

Theorem facp1 10839
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9268 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnuz 9655 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
32biimpi 120 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4 fvi 5621 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
5 eluzelcn 9629 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → 𝑓 ∈ ℂ)
64, 5eqeltrd 2273 . . . . . . 7 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
76adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
8 mulcl 8023 . . . . . . 7 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
98adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
103, 7, 9seq3p1 10574 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
11 peano2nn 9019 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
12 fvi 5621 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1311, 12syl 14 . . . . . 6 (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1413oveq2d 5941 . . . . 5 (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
1510, 14eqtrd 2229 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
16 facnn 10836 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
1711, 16syl 14 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
18 facnn 10836 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918oveq1d 5940 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
2015, 17, 193eqtr4d 2239 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
21 0p1e1 9121 . . . . . 6 (0 + 1) = 1
2221fveq2i 5564 . . . . 5 (!‘(0 + 1)) = (!‘1)
23 fac1 10838 . . . . 5 (!‘1) = 1
2422, 23eqtri 2217 . . . 4 (!‘(0 + 1)) = 1
25 fvoveq1 5948 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
26 fveq2 5561 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
27 oveq1 5932 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2826, 27oveq12d 5943 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
29 fac0 10837 . . . . . . 7 (!‘0) = 1
3029, 21oveq12i 5937 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
31 1t1e1 9160 . . . . . 6 (1 · 1) = 1
3230, 31eqtri 2217 . . . . 5 ((!‘0) · (0 + 1)) = 1
3328, 32eqtrdi 2245 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
3424, 25, 333eqtr4a 2255 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3520, 34jaoi 717 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
361, 35sylbi 121 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167   I cid 4324  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cn 9007  0cn0 9266  cuz 9618  seqcseq 10556  !cfa 10834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-fac 10835
This theorem is referenced by:  fac2  10840  fac3  10841  fac4  10842  facnn2  10843  faccl  10844  facdiv  10847  facwordi  10849  faclbnd  10850  faclbnd6  10853  facubnd  10854  bcm1k  10869  bcp1n  10870  4bc2eq6  10883  fprodfac  11797  efcllemp  11840  ef01bndlem  11938  eirraplem  11959  dvdsfac  12042  prmfac1  12345  pcfac  12544  2expltfac  12633  ex-fac  15458
  Copyright terms: Public domain W3C validator