| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facp1 | GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9371 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | elnnuz 9759 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 3 | 2 | biimpi 120 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 4 | fvi 5691 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 5 | eluzelcn 9733 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → 𝑓 ∈ ℂ) | |
| 6 | 4, 5 | eqeltrd 2306 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 8 | mulcl 8126 | . . . . . . 7 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 10 | 3, 7, 9 | seq3p1 10687 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 11 | peano2nn 9122 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 12 | fvi 5691 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 13 | 11, 12 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) |
| 14 | 13 | oveq2d 6017 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 15 | 10, 14 | eqtrd 2262 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 16 | facnn 10949 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 17 | 11, 16 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 18 | facnn 10949 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 19 | 18 | oveq1d 6016 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 20 | 15, 17, 19 | 3eqtr4d 2272 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 21 | 0p1e1 9224 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 22 | 21 | fveq2i 5630 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 23 | fac1 10951 | . . . . 5 ⊢ (!‘1) = 1 | |
| 24 | 22, 23 | eqtri 2250 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 25 | fvoveq1 6024 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 26 | fveq2 5627 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 27 | oveq1 6008 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 28 | 26, 27 | oveq12d 6019 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 29 | fac0 10950 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 30 | 29, 21 | oveq12i 6013 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 31 | 1t1e1 9263 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 32 | 30, 31 | eqtri 2250 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 33 | 28, 32 | eqtrdi 2278 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 34 | 24, 25, 33 | 3eqtr4a 2288 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 35 | 20, 34 | jaoi 721 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 36 | 1, 35 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 I cid 4379 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 0cc0 7999 1c1 8000 + caddc 8002 · cmul 8004 ℕcn 9110 ℕ0cn0 9369 ℤ≥cuz 9722 seqcseq 10669 !cfa 10947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 df-fac 10948 |
| This theorem is referenced by: fac2 10953 fac3 10954 fac4 10955 facnn2 10956 faccl 10957 facdiv 10960 facwordi 10962 faclbnd 10963 faclbnd6 10966 facubnd 10967 bcm1k 10982 bcp1n 10983 4bc2eq6 10996 fprodfac 12126 efcllemp 12169 ef01bndlem 12267 eirraplem 12288 dvdsfac 12371 prmfac1 12674 pcfac 12873 2expltfac 12962 ex-fac 16092 |
| Copyright terms: Public domain | W3C validator |