Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  facp1 GIF version

Theorem facp1 10509
 Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9004 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnuz 9387 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
32biimpi 119 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4 fvi 5486 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
5 eluzelcn 9362 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → 𝑓 ∈ ℂ)
64, 5eqeltrd 2217 . . . . . . 7 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
76adantl 275 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
8 mulcl 7772 . . . . . . 7 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
98adantl 275 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
103, 7, 9seq3p1 10267 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
11 peano2nn 8757 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
12 fvi 5486 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1311, 12syl 14 . . . . . 6 (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1413oveq2d 5798 . . . . 5 (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
1510, 14eqtrd 2173 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
16 facnn 10506 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
1711, 16syl 14 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
18 facnn 10506 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918oveq1d 5797 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
2015, 17, 193eqtr4d 2183 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
21 0p1e1 8859 . . . . . 6 (0 + 1) = 1
2221fveq2i 5432 . . . . 5 (!‘(0 + 1)) = (!‘1)
23 fac1 10508 . . . . 5 (!‘1) = 1
2422, 23eqtri 2161 . . . 4 (!‘(0 + 1)) = 1
25 fvoveq1 5805 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
26 fveq2 5429 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
27 oveq1 5789 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2826, 27oveq12d 5800 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
29 fac0 10507 . . . . . . 7 (!‘0) = 1
3029, 21oveq12i 5794 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
31 1t1e1 8897 . . . . . 6 (1 · 1) = 1
3230, 31eqtri 2161 . . . . 5 ((!‘0) · (0 + 1)) = 1
3328, 32eqtrdi 2189 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
3424, 25, 333eqtr4a 2199 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3520, 34jaoi 706 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
361, 35sylbi 120 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ wo 698   = wceq 1332   ∈ wcel 1481   I cid 4218  ‘cfv 5131  (class class class)co 5782  ℂcc 7643  0cc0 7645  1c1 7646   + caddc 7648   · cmul 7650  ℕcn 8745  ℕ0cn0 9002  ℤ≥cuz 9351  seqcseq 10250  !cfa 10504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-ltadd 7761 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-inn 8746  df-n0 9003  df-z 9080  df-uz 9352  df-seqfrec 10251  df-fac 10505 This theorem is referenced by:  fac2  10510  fac3  10511  fac4  10512  facnn2  10513  faccl  10514  facdiv  10517  facwordi  10519  faclbnd  10520  faclbnd6  10523  facubnd  10524  bcm1k  10539  bcp1n  10540  4bc2eq6  10553  efcllemp  11402  ef01bndlem  11500  eirraplem  11520  dvdsfac  11595  prmfac1  11867  ex-fac  13112
 Copyright terms: Public domain W3C validator