ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facp1 GIF version

Theorem facp1 10822
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9251 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnuz 9638 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
32biimpi 120 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4 fvi 5618 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
5 eluzelcn 9612 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → 𝑓 ∈ ℂ)
64, 5eqeltrd 2273 . . . . . . 7 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
76adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
8 mulcl 8006 . . . . . . 7 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
98adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
103, 7, 9seq3p1 10557 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
11 peano2nn 9002 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
12 fvi 5618 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1311, 12syl 14 . . . . . 6 (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1413oveq2d 5938 . . . . 5 (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
1510, 14eqtrd 2229 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
16 facnn 10819 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
1711, 16syl 14 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
18 facnn 10819 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918oveq1d 5937 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
2015, 17, 193eqtr4d 2239 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
21 0p1e1 9104 . . . . . 6 (0 + 1) = 1
2221fveq2i 5561 . . . . 5 (!‘(0 + 1)) = (!‘1)
23 fac1 10821 . . . . 5 (!‘1) = 1
2422, 23eqtri 2217 . . . 4 (!‘(0 + 1)) = 1
25 fvoveq1 5945 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
26 fveq2 5558 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
27 oveq1 5929 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2826, 27oveq12d 5940 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
29 fac0 10820 . . . . . . 7 (!‘0) = 1
3029, 21oveq12i 5934 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
31 1t1e1 9143 . . . . . 6 (1 · 1) = 1
3230, 31eqtri 2217 . . . . 5 ((!‘0) · (0 + 1)) = 1
3328, 32eqtrdi 2245 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
3424, 25, 333eqtr4a 2255 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3520, 34jaoi 717 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
361, 35sylbi 121 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167   I cid 4323  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cn 8990  0cn0 9249  cuz 9601  seqcseq 10539  !cfa 10817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-fac 10818
This theorem is referenced by:  fac2  10823  fac3  10824  fac4  10825  facnn2  10826  faccl  10827  facdiv  10830  facwordi  10832  faclbnd  10833  faclbnd6  10836  facubnd  10837  bcm1k  10852  bcp1n  10853  4bc2eq6  10866  fprodfac  11780  efcllemp  11823  ef01bndlem  11921  eirraplem  11942  dvdsfac  12025  prmfac1  12320  pcfac  12519  2expltfac  12608  ex-fac  15374
  Copyright terms: Public domain W3C validator