ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facp1 GIF version

Theorem facp1 10694
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9167 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnuz 9553 . . . . . . 7 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ‘1))
32biimpi 120 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ‘1))
4 fvi 5569 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) = 𝑓)
5 eluzelcn 9528 . . . . . . . 8 (𝑓 ∈ (ℤ‘1) → 𝑓 ∈ ℂ)
64, 5eqeltrd 2254 . . . . . . 7 (𝑓 ∈ (ℤ‘1) → ( I ‘𝑓) ∈ ℂ)
76adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ‘1)) → ( I ‘𝑓) ∈ ℂ)
8 mulcl 7929 . . . . . . 7 ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ)
98adantl 277 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ)
103, 7, 9seq3p1 10448 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
11 peano2nn 8920 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
12 fvi 5569 . . . . . . 7 ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1311, 12syl 14 . . . . . 6 (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
1413oveq2d 5885 . . . . 5 (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
1510, 14eqtrd 2210 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
16 facnn 10691 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
1711, 16syl 14 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
18 facnn 10691 . . . . 5 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1918oveq1d 5884 . . . 4 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
2015, 17, 193eqtr4d 2220 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
21 0p1e1 9022 . . . . . 6 (0 + 1) = 1
2221fveq2i 5514 . . . . 5 (!‘(0 + 1)) = (!‘1)
23 fac1 10693 . . . . 5 (!‘1) = 1
2422, 23eqtri 2198 . . . 4 (!‘(0 + 1)) = 1
25 fvoveq1 5892 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
26 fveq2 5511 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
27 oveq1 5876 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2826, 27oveq12d 5887 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
29 fac0 10692 . . . . . . 7 (!‘0) = 1
3029, 21oveq12i 5881 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
31 1t1e1 9060 . . . . . 6 (1 · 1) = 1
3230, 31eqtri 2198 . . . . 5 ((!‘0) · (0 + 1)) = 1
3328, 32eqtrdi 2226 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
3424, 25, 333eqtr4a 2236 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3520, 34jaoi 716 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
361, 35sylbi 121 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148   I cid 4285  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cn 8908  0cn0 9165  cuz 9517  seqcseq 10431  !cfa 10689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-fac 10690
This theorem is referenced by:  fac2  10695  fac3  10696  fac4  10697  facnn2  10698  faccl  10699  facdiv  10702  facwordi  10704  faclbnd  10705  faclbnd6  10708  facubnd  10709  bcm1k  10724  bcp1n  10725  4bc2eq6  10738  fprodfac  11607  efcllemp  11650  ef01bndlem  11748  eirraplem  11768  dvdsfac  11849  prmfac1  12135  pcfac  12331  ex-fac  14136
  Copyright terms: Public domain W3C validator