Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > facp1 | GIF version |
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
Ref | Expression |
---|---|
facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 9116 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | elnnuz 9502 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
3 | 2 | biimpi 119 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
4 | fvi 5543 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
5 | eluzelcn 9477 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → 𝑓 ∈ ℂ) | |
6 | 4, 5 | eqeltrd 2243 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
7 | 6 | adantl 275 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
8 | mulcl 7880 | . . . . . . 7 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
9 | 8 | adantl 275 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
10 | 3, 7, 9 | seq3p1 10397 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
11 | peano2nn 8869 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
12 | fvi 5543 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
13 | 11, 12 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) |
14 | 13 | oveq2d 5858 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
15 | 10, 14 | eqtrd 2198 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
16 | facnn 10640 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
17 | 11, 16 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
18 | facnn 10640 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
19 | 18 | oveq1d 5857 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
20 | 15, 17, 19 | 3eqtr4d 2208 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
21 | 0p1e1 8971 | . . . . . 6 ⊢ (0 + 1) = 1 | |
22 | 21 | fveq2i 5489 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
23 | fac1 10642 | . . . . 5 ⊢ (!‘1) = 1 | |
24 | 22, 23 | eqtri 2186 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
25 | fvoveq1 5865 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
26 | fveq2 5486 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
27 | oveq1 5849 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
28 | 26, 27 | oveq12d 5860 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
29 | fac0 10641 | . . . . . . 7 ⊢ (!‘0) = 1 | |
30 | 29, 21 | oveq12i 5854 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
31 | 1t1e1 9009 | . . . . . 6 ⊢ (1 · 1) = 1 | |
32 | 30, 31 | eqtri 2186 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
33 | 28, 32 | eqtrdi 2215 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
34 | 24, 25, 33 | 3eqtr4a 2225 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
35 | 20, 34 | jaoi 706 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
36 | 1, 35 | sylbi 120 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∈ wcel 2136 I cid 4266 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 ℕcn 8857 ℕ0cn0 9114 ℤ≥cuz 9466 seqcseq 10380 !cfa 10638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-fac 10639 |
This theorem is referenced by: fac2 10644 fac3 10645 fac4 10646 facnn2 10647 faccl 10648 facdiv 10651 facwordi 10653 faclbnd 10654 faclbnd6 10657 facubnd 10658 bcm1k 10673 bcp1n 10674 4bc2eq6 10687 fprodfac 11556 efcllemp 11599 ef01bndlem 11697 eirraplem 11717 dvdsfac 11798 prmfac1 12084 pcfac 12280 ex-fac 13609 |
Copyright terms: Public domain | W3C validator |