| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > facp1 | GIF version | ||
| Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.) |
| Ref | Expression |
|---|---|
| facp1 | ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 9268 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | elnnuz 9655 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 3 | 2 | biimpi 120 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 4 | fvi 5621 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) = 𝑓) | |
| 5 | eluzelcn 9629 | . . . . . . . 8 ⊢ (𝑓 ∈ (ℤ≥‘1) → 𝑓 ∈ ℂ) | |
| 6 | 4, 5 | eqeltrd 2273 | . . . . . . 7 ⊢ (𝑓 ∈ (ℤ≥‘1) → ( I ‘𝑓) ∈ ℂ) |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝑓 ∈ (ℤ≥‘1)) → ( I ‘𝑓) ∈ ℂ) |
| 8 | mulcl 8023 | . . . . . . 7 ⊢ ((𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ) → (𝑓 · 𝑔) ∈ ℂ) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑓 ∈ ℂ ∧ 𝑔 ∈ ℂ)) → (𝑓 · 𝑔) ∈ ℂ) |
| 10 | 3, 7, 9 | seq3p1 10574 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1)))) |
| 11 | peano2nn 9019 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 12 | fvi 5621 | . . . . . . 7 ⊢ ((𝑁 + 1) ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) | |
| 13 | 11, 12 | syl 14 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ( I ‘(𝑁 + 1)) = (𝑁 + 1)) |
| 14 | 13 | oveq2d 5941 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 15 | 10, 14 | eqtrd 2229 | . . . 4 ⊢ (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 16 | facnn 10836 | . . . . 5 ⊢ ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) | |
| 17 | 11, 16 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1))) |
| 18 | facnn 10836 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁)) | |
| 19 | 18 | oveq1d 5940 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))) |
| 20 | 15, 17, 19 | 3eqtr4d 2239 | . . 3 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 21 | 0p1e1 9121 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 22 | 21 | fveq2i 5564 | . . . . 5 ⊢ (!‘(0 + 1)) = (!‘1) |
| 23 | fac1 10838 | . . . . 5 ⊢ (!‘1) = 1 | |
| 24 | 22, 23 | eqtri 2217 | . . . 4 ⊢ (!‘(0 + 1)) = 1 |
| 25 | fvoveq1 5948 | . . . 4 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1))) | |
| 26 | fveq2 5561 | . . . . . 6 ⊢ (𝑁 = 0 → (!‘𝑁) = (!‘0)) | |
| 27 | oveq1 5932 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 28 | 26, 27 | oveq12d 5943 | . . . . 5 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1))) |
| 29 | fac0 10837 | . . . . . . 7 ⊢ (!‘0) = 1 | |
| 30 | 29, 21 | oveq12i 5937 | . . . . . 6 ⊢ ((!‘0) · (0 + 1)) = (1 · 1) |
| 31 | 1t1e1 9160 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 32 | 30, 31 | eqtri 2217 | . . . . 5 ⊢ ((!‘0) · (0 + 1)) = 1 |
| 33 | 28, 32 | eqtrdi 2245 | . . . 4 ⊢ (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1) |
| 34 | 24, 25, 33 | 3eqtr4a 2255 | . . 3 ⊢ (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 35 | 20, 34 | jaoi 717 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| 36 | 1, 35 | sylbi 121 | 1 ⊢ (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2167 I cid 4324 ‘cfv 5259 (class class class)co 5925 ℂcc 7894 0cc0 7896 1c1 7897 + caddc 7899 · cmul 7901 ℕcn 9007 ℕ0cn0 9266 ℤ≥cuz 9618 seqcseq 10556 !cfa 10834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-fac 10835 |
| This theorem is referenced by: fac2 10840 fac3 10841 fac4 10842 facnn2 10843 faccl 10844 facdiv 10847 facwordi 10849 faclbnd 10850 faclbnd6 10853 facubnd 10854 bcm1k 10869 bcp1n 10870 4bc2eq6 10883 fprodfac 11797 efcllemp 11840 ef01bndlem 11938 eirraplem 11959 dvdsfac 12042 prmfac1 12345 pcfac 12544 2expltfac 12633 ex-fac 15458 |
| Copyright terms: Public domain | W3C validator |