| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) | 
| Ref | Expression | 
|---|---|
| 1onn | ⊢ 1o ∈ ω | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-1o 6474 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4630 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4631 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω | 
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 1o ∈ ω | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∅c0 3450 suc csuc 4400 ωcom 4626 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-1o 6474 | 
| This theorem is referenced by: 2onn 6579 nnm2 6584 nnaordex 6586 snfig 6873 snnen2og 6920 1nen2 6922 unfiexmid 6979 en1eqsn 7014 omp1eomlem 7160 fodjum 7212 fodju0 7213 nninfdcinf 7237 nninfwlporlemd 7238 nninfwlporlem 7239 en2eleq 7262 en2other2 7263 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 1pi 7382 1lt2pi 7407 archnqq 7484 nq0m0r 7523 nq02m 7532 prarloclemlt 7560 prarloclemlo 7561 1tonninf 10533 hash2 10904 fnpr2o 12982 fvpr1o 12985 012of 15640 pwle2 15643 peano3nninf 15651 nninfall 15653 nninfsellemdc 15654 nninfsellemeq 15658 nninfsellemeqinf 15660 nninffeq 15664 sbthom 15670 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |