| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6492 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4640 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4641 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∅c0 3459 suc csuc 4410 ωcom 4636 1oc1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4416 df-iom 4637 df-1o 6492 |
| This theorem is referenced by: 2onn 6597 nnm2 6602 nnaordex 6604 snfig 6891 snnen2og 6938 1nen2 6940 unfiexmid 6997 en1eqsn 7032 omp1eomlem 7178 fodjum 7230 fodju0 7231 nninfdcinf 7255 nninfwlporlemd 7256 nninfwlporlem 7257 en2eleq 7285 en2other2 7286 exmidfodomrlemr 7292 exmidfodomrlemrALT 7293 1pi 7410 1lt2pi 7435 archnqq 7512 nq0m0r 7551 nq02m 7560 prarloclemlt 7588 prarloclemlo 7589 1tonninf 10567 hash2 10938 fnpr2o 13089 fvpr1o 13092 012of 15794 2omap 15796 pwle2 15799 peano3nninf 15808 nninfall 15810 nninfsellemdc 15811 nninfsellemeq 15815 nninfsellemeqinf 15817 nninffeq 15821 sbthom 15829 isomninnlem 15833 iswomninnlem 15852 ismkvnnlem 15855 |
| Copyright terms: Public domain | W3C validator |