| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6483 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4631 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4632 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∅c0 3451 suc csuc 4401 ωcom 4627 1oc1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-1o 6483 |
| This theorem is referenced by: 2onn 6588 nnm2 6593 nnaordex 6595 snfig 6882 snnen2og 6929 1nen2 6931 unfiexmid 6988 en1eqsn 7023 omp1eomlem 7169 fodjum 7221 fodju0 7222 nninfdcinf 7246 nninfwlporlemd 7247 nninfwlporlem 7248 en2eleq 7274 en2other2 7275 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 1pi 7399 1lt2pi 7424 archnqq 7501 nq0m0r 7540 nq02m 7549 prarloclemlt 7577 prarloclemlo 7578 1tonninf 10550 hash2 10921 fnpr2o 13041 fvpr1o 13044 012of 15724 2omap 15726 pwle2 15729 peano3nninf 15738 nninfall 15740 nninfsellemdc 15741 nninfsellemeq 15745 nninfsellemeqinf 15747 nninffeq 15751 sbthom 15757 isomninnlem 15761 iswomninnlem 15780 ismkvnnlem 15783 |
| Copyright terms: Public domain | W3C validator |