Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1onn | GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6395 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 4578 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 4579 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 ∅c0 3414 suc csuc 4350 ωcom 4574 1oc1o 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-1o 6395 |
This theorem is referenced by: 2onn 6500 nnm2 6505 nnaordex 6507 snfig 6792 snnen2og 6837 1nen2 6839 unfiexmid 6895 en1eqsn 6925 omp1eomlem 7071 fodjum 7122 fodju0 7123 nninfdcinf 7147 nninfwlporlemd 7148 nninfwlporlem 7149 en2eleq 7172 en2other2 7173 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 1pi 7277 1lt2pi 7302 archnqq 7379 nq0m0r 7418 nq02m 7427 prarloclemlt 7455 prarloclemlo 7456 1tonninf 10396 hash2 10747 012of 14028 pwle2 14031 peano3nninf 14040 nninfall 14042 nninfsellemdc 14043 nninfsellemeq 14047 nninfsellemeqinf 14049 nninffeq 14053 sbthom 14058 isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |