![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1onn | GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6420 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 4595 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 4596 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2250 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ∅c0 3424 suc csuc 4367 ωcom 4591 1oc1o 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-1o 6420 |
This theorem is referenced by: 2onn 6525 nnm2 6530 nnaordex 6532 snfig 6817 snnen2og 6862 1nen2 6864 unfiexmid 6920 en1eqsn 6950 omp1eomlem 7096 fodjum 7147 fodju0 7148 nninfdcinf 7172 nninfwlporlemd 7173 nninfwlporlem 7174 en2eleq 7197 en2other2 7198 exmidfodomrlemr 7204 exmidfodomrlemrALT 7205 1pi 7317 1lt2pi 7342 archnqq 7419 nq0m0r 7458 nq02m 7467 prarloclemlt 7495 prarloclemlo 7496 1tonninf 10443 hash2 10795 fnpr2o 12764 fvpr1o 12767 012of 14886 pwle2 14889 peano3nninf 14897 nninfall 14899 nninfsellemdc 14900 nninfsellemeq 14904 nninfsellemeqinf 14906 nninffeq 14910 sbthom 14915 isomninnlem 14919 iswomninnlem 14938 ismkvnnlem 14941 |
Copyright terms: Public domain | W3C validator |