| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6515 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4650 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4651 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2279 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∅c0 3464 suc csuc 4420 ωcom 4646 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 df-1o 6515 |
| This theorem is referenced by: 2onn 6620 nnm2 6625 nnaordex 6627 snfig 6920 snnen2og 6971 1nen2 6973 unfiexmid 7030 en1eqsn 7065 omp1eomlem 7211 fodjum 7263 fodju0 7264 nninfdcinf 7288 nninfwlporlemd 7289 nninfwlporlem 7290 en2eleq 7319 en2other2 7320 exmidfodomrlemr 7326 exmidfodomrlemrALT 7327 1pi 7448 1lt2pi 7473 archnqq 7550 nq0m0r 7589 nq02m 7598 prarloclemlt 7626 prarloclemlo 7627 1tonninf 10608 hash2 10979 fnpr2o 13246 fvpr1o 13249 upgrfi 15773 012of 16069 2omap 16071 pwle2 16076 peano3nninf 16085 nninfall 16087 nninfsellemdc 16088 nninfsellemeq 16092 nninfsellemeqinf 16094 nninffeq 16098 sbthom 16106 isomninnlem 16110 iswomninnlem 16129 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |