| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6501 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4641 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4642 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2277 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 ∅c0 3459 suc csuc 4411 ωcom 4637 1oc1o 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4417 df-iom 4638 df-1o 6501 |
| This theorem is referenced by: 2onn 6606 nnm2 6611 nnaordex 6613 snfig 6905 snnen2og 6955 1nen2 6957 unfiexmid 7014 en1eqsn 7049 omp1eomlem 7195 fodjum 7247 fodju0 7248 nninfdcinf 7272 nninfwlporlemd 7273 nninfwlporlem 7274 en2eleq 7302 en2other2 7303 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 1pi 7427 1lt2pi 7452 archnqq 7529 nq0m0r 7568 nq02m 7577 prarloclemlt 7605 prarloclemlo 7606 1tonninf 10584 hash2 10955 fnpr2o 13113 fvpr1o 13116 012of 15863 2omap 15865 pwle2 15868 peano3nninf 15877 nninfall 15879 nninfsellemdc 15880 nninfsellemeq 15884 nninfsellemeqinf 15886 nninffeq 15890 sbthom 15898 isomninnlem 15902 iswomninnlem 15921 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |