Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1onn | GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6384 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 4571 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 4572 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2239 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∅c0 3409 suc csuc 4343 ωcom 4567 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-1o 6384 |
This theorem is referenced by: 2onn 6489 nnm2 6493 nnaordex 6495 snfig 6780 snnen2og 6825 1nen2 6827 unfiexmid 6883 en1eqsn 6913 omp1eomlem 7059 fodjum 7110 fodju0 7111 en2eleq 7151 en2other2 7152 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 1pi 7256 1lt2pi 7281 archnqq 7358 nq0m0r 7397 nq02m 7406 prarloclemlt 7434 prarloclemlo 7435 1tonninf 10375 hash2 10725 012of 13875 pwle2 13878 peano3nninf 13887 nninfall 13889 nninfsellemdc 13890 nninfsellemeq 13894 nninfsellemeqinf 13896 nninffeq 13900 sbthom 13905 isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |