| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1onn | GIF version | ||
| Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| 1onn | ⊢ 1o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o 6560 | . 2 ⊢ 1o = suc ∅ | |
| 2 | peano1 4685 | . . 3 ⊢ ∅ ∈ ω | |
| 3 | peano2 4686 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
| 5 | 1, 4 | eqeltri 2302 | 1 ⊢ 1o ∈ ω |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∅c0 3491 suc csuc 4455 ωcom 4681 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-suc 4461 df-iom 4682 df-1o 6560 |
| This theorem is referenced by: 2onn 6665 nnm2 6670 nnaordex 6672 snfig 6965 snnen2og 7016 1nen2 7018 1ndom2 7022 unfiexmid 7076 en1eqsn 7111 omp1eomlem 7257 fodjum 7309 fodju0 7310 nninfdcinf 7334 nninfwlporlemd 7335 nninfwlporlem 7336 en2eleq 7369 en2other2 7370 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 1pi 7498 1lt2pi 7523 archnqq 7600 nq0m0r 7639 nq02m 7648 prarloclemlt 7676 prarloclemlo 7677 1tonninf 10658 hash2 11029 fnpr2o 13367 fvpr1o 13370 upgrfi 15896 012of 16316 2omap 16318 pwle2 16323 peano3nninf 16332 nninfall 16334 nninfsellemdc 16335 nninfsellemeq 16339 nninfsellemeqinf 16341 nninffeq 16345 sbthom 16353 isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |