Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1onn | GIF version |
Description: One is a natural number. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
1onn | ⊢ 1o ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1o 6357 | . 2 ⊢ 1o = suc ∅ | |
2 | peano1 4551 | . . 3 ⊢ ∅ ∈ ω | |
3 | peano2 4552 | . . 3 ⊢ (∅ ∈ ω → suc ∅ ∈ ω) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ suc ∅ ∈ ω |
5 | 1, 4 | eqeltri 2230 | 1 ⊢ 1o ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2128 ∅c0 3394 suc csuc 4324 ωcom 4547 1oc1o 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-int 3808 df-suc 4330 df-iom 4548 df-1o 6357 |
This theorem is referenced by: 2onn 6461 nnm2 6465 nnaordex 6467 snfig 6752 snnen2og 6797 1nen2 6799 unfiexmid 6855 en1eqsn 6885 omp1eomlem 7028 fodjum 7072 fodju0 7073 en2eleq 7113 en2other2 7114 exmidfodomrlemr 7120 exmidfodomrlemrALT 7121 1pi 7218 1lt2pi 7243 archnqq 7320 nq0m0r 7359 nq02m 7368 prarloclemlt 7396 prarloclemlo 7397 1tonninf 10321 hash2 10668 012of 13527 pwle2 13530 peano3nninf 13540 nninfall 13543 nninfsellemdc 13544 nninfsellemeq 13548 nninfsellemeqinf 13550 nninffeq 13554 sbthom 13559 isomninnlem 13563 iswomninnlem 13582 ismkvnnlem 13585 |
Copyright terms: Public domain | W3C validator |