![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unbendc | GIF version |
Description: An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.) |
Ref | Expression |
---|---|
unbendc | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1002 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ⊆ ℕ) | |
2 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sseldd 3181 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ ℕ) |
4 | 3 | nnzd 9441 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ ℤ) |
5 | simprr 531 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) | |
6 | 1, 5 | sseldd 3181 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ℕ) |
7 | 6 | nnzd 9441 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ℤ) |
8 | zdceq 9395 | . . . 4 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 𝑦 = 𝑧) | |
9 | 4, 7, 8 | syl2anc 411 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → DECID 𝑦 = 𝑧) |
10 | 9 | ralrimivva 2576 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 DECID 𝑦 = 𝑧) |
11 | ssnnct 12607 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o)) | |
12 | 11 | 3adant3 1019 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o)) |
13 | nninfdc 12613 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ω ≼ 𝐴) | |
14 | infm 6962 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑞 𝑞 ∈ 𝐴) | |
15 | ctm 7170 | . . . 4 ⊢ (∃𝑞 𝑞 ∈ 𝐴 → (∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑤 𝑤:ω–onto→𝐴)) | |
16 | 13, 14, 15 | 3syl 17 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → (∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑤 𝑤:ω–onto→𝐴)) |
17 | 12, 16 | mpbid 147 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑤 𝑤:ω–onto→𝐴) |
18 | ctinf 12590 | . 2 ⊢ (𝐴 ≈ ℕ ↔ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 DECID 𝑦 = 𝑧 ∧ ∃𝑤 𝑤:ω–onto→𝐴 ∧ ω ≼ 𝐴)) | |
19 | 10, 17, 13, 18 | syl3anbrc 1183 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 ∧ w3a 980 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 class class class wbr 4030 ωcom 4623 –onto→wfo 5253 1oc1o 6464 ≈ cen 6794 ≼ cdom 6795 ⊔ cdju 7098 < clt 8056 ℕcn 8984 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-isom 5264 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-1o 6471 df-er 6589 df-pm 6707 df-en 6797 df-dom 6798 df-fin 6799 df-sup 7045 df-inf 7046 df-dju 7099 df-inl 7108 df-inr 7109 df-case 7145 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-fzo 10212 df-seqfrec 10522 |
This theorem is referenced by: prminf 12615 |
Copyright terms: Public domain | W3C validator |