![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unbendc | GIF version |
Description: An unbounded decidable set of positive integers is infinite. (Contributed by NM, 5-May-2005.) (Revised by Jim Kingdon, 30-Sep-2024.) |
Ref | Expression |
---|---|
unbendc | ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1000 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ⊆ ℕ) | |
2 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sseldd 3158 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ ℕ) |
4 | 3 | nnzd 9376 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ ℤ) |
5 | simprr 531 | . . . . . 6 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) | |
6 | 1, 5 | sseldd 3158 | . . . . 5 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ℕ) |
7 | 6 | nnzd 9376 | . . . 4 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ ℤ) |
8 | zdceq 9330 | . . . 4 ⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → DECID 𝑦 = 𝑧) | |
9 | 4, 7, 8 | syl2anc 411 | . . 3 ⊢ (((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → DECID 𝑦 = 𝑧) |
10 | 9 | ralrimivva 2559 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 DECID 𝑦 = 𝑧) |
11 | ssnnct 12450 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴) → ∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o)) | |
12 | 11 | 3adant3 1017 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o)) |
13 | nninfdc 12456 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ω ≼ 𝐴) | |
14 | infm 6906 | . . . 4 ⊢ (ω ≼ 𝐴 → ∃𝑞 𝑞 ∈ 𝐴) | |
15 | ctm 7110 | . . . 4 ⊢ (∃𝑞 𝑞 ∈ 𝐴 → (∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑤 𝑤:ω–onto→𝐴)) | |
16 | 13, 14, 15 | 3syl 17 | . . 3 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → (∃𝑤 𝑤:ω–onto→(𝐴 ⊔ 1o) ↔ ∃𝑤 𝑤:ω–onto→𝐴)) |
17 | 12, 16 | mpbid 147 | . 2 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → ∃𝑤 𝑤:ω–onto→𝐴) |
18 | ctinf 12433 | . 2 ⊢ (𝐴 ≈ ℕ ↔ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 DECID 𝑦 = 𝑧 ∧ ∃𝑤 𝑤:ω–onto→𝐴 ∧ ω ≼ 𝐴)) | |
19 | 10, 17, 13, 18 | syl3anbrc 1181 | 1 ⊢ ((𝐴 ⊆ ℕ ∧ ∀𝑥 ∈ ℕ DECID 𝑥 ∈ 𝐴 ∧ ∀𝑚 ∈ ℕ ∃𝑛 ∈ 𝐴 𝑚 < 𝑛) → 𝐴 ≈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 834 ∧ w3a 978 ∃wex 1492 ∈ wcel 2148 ∀wral 2455 ∃wrex 2456 ⊆ wss 3131 class class class wbr 4005 ωcom 4591 –onto→wfo 5216 1oc1o 6412 ≈ cen 6740 ≼ cdom 6741 ⊔ cdju 7038 < clt 7994 ℕcn 8921 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-1o 6419 df-er 6537 df-pm 6653 df-en 6743 df-dom 6744 df-fin 6745 df-sup 6985 df-inf 6986 df-dju 7039 df-inl 7048 df-inr 7049 df-case 7085 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 df-fzo 10145 df-seqfrec 10448 |
This theorem is referenced by: prminf 12458 |
Copyright terms: Public domain | W3C validator |