| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > aptipr | GIF version | ||
| Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| aptipr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1002 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 ∈ P) | |
| 2 | simp2 1003 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐵 ∈ P) | |
| 3 | ioran 756 | . . . . . . 7 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) ↔ (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) | |
| 4 | 3 | biimpi 120 | . . . . . 6 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
| 5 | 4 | 3ad2ant3 1025 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
| 6 | 5 | simprd 114 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐵<P 𝐴) |
| 7 | aptiprleml 7794 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) | |
| 8 | 1, 2, 6, 7 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) |
| 9 | 5 | simpld 112 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐴<P 𝐵) |
| 10 | aptiprleml 7794 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) | |
| 11 | 2, 1, 9, 10 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) |
| 12 | 8, 11 | eqssd 3221 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) = (1st ‘𝐵)) |
| 13 | aptiprlemu 7795 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) | |
| 14 | 2, 1, 9, 13 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) |
| 15 | aptiprlemu 7795 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) | |
| 16 | 1, 2, 6, 15 | syl3anc 1252 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) |
| 17 | 14, 16 | eqssd 3221 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) = (2nd ‘𝐵)) |
| 18 | preqlu 7627 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
| 19 | 18 | 3adant3 1022 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
| 20 | 12, 17, 19 | mpbir2and 949 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ⊆ wss 3177 class class class wbr 4062 ‘cfv 5294 1st c1st 6254 2nd c2nd 6255 Pcnp 7446 <P cltp 7450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-2o 6533 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-pli 7460 df-mi 7461 df-lti 7462 df-plpq 7499 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-plqqs 7504 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-enq0 7579 df-nq0 7580 df-0nq0 7581 df-plq0 7582 df-mq0 7583 df-inp 7621 df-iltp 7625 |
| This theorem is referenced by: aptisr 7934 |
| Copyright terms: Public domain | W3C validator |