![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > aptipr | GIF version |
Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.) |
Ref | Expression |
---|---|
aptipr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 ∈ P) | |
2 | simp2 998 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐵 ∈ P) | |
3 | ioran 752 | . . . . . . 7 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) ↔ (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) | |
4 | 3 | biimpi 120 | . . . . . 6 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
5 | 4 | 3ad2ant3 1020 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
6 | 5 | simprd 114 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐵<P 𝐴) |
7 | aptiprleml 7640 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) | |
8 | 1, 2, 6, 7 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) |
9 | 5 | simpld 112 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐴<P 𝐵) |
10 | aptiprleml 7640 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) | |
11 | 2, 1, 9, 10 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) |
12 | 8, 11 | eqssd 3174 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) = (1st ‘𝐵)) |
13 | aptiprlemu 7641 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) | |
14 | 2, 1, 9, 13 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) |
15 | aptiprlemu 7641 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) | |
16 | 1, 2, 6, 15 | syl3anc 1238 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) |
17 | 14, 16 | eqssd 3174 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) = (2nd ‘𝐵)) |
18 | preqlu 7473 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
19 | 18 | 3adant3 1017 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
20 | 12, 17, 19 | mpbir2and 944 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ⊆ wss 3131 class class class wbr 4005 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 Pcnp 7292 <P cltp 7296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-2o 6420 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-enq0 7425 df-nq0 7426 df-0nq0 7427 df-plq0 7428 df-mq0 7429 df-inp 7467 df-iltp 7471 |
This theorem is referenced by: aptisr 7780 |
Copyright terms: Public domain | W3C validator |