Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > aptipr | GIF version |
Description: Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.) |
Ref | Expression |
---|---|
aptipr | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 992 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 ∈ P) | |
2 | simp2 993 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐵 ∈ P) | |
3 | ioran 747 | . . . . . . 7 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) ↔ (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) | |
4 | 3 | biimpi 119 | . . . . . 6 ⊢ (¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
5 | 4 | 3ad2ant3 1015 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (¬ 𝐴<P 𝐵 ∧ ¬ 𝐵<P 𝐴)) |
6 | 5 | simprd 113 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐵<P 𝐴) |
7 | aptiprleml 7601 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) | |
8 | 1, 2, 6, 7 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) ⊆ (1st ‘𝐵)) |
9 | 5 | simpld 111 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → ¬ 𝐴<P 𝐵) |
10 | aptiprleml 7601 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) | |
11 | 2, 1, 9, 10 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐵) ⊆ (1st ‘𝐴)) |
12 | 8, 11 | eqssd 3164 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (1st ‘𝐴) = (1st ‘𝐵)) |
13 | aptiprlemu 7602 | . . . 4 ⊢ ((𝐵 ∈ P ∧ 𝐴 ∈ P ∧ ¬ 𝐴<P 𝐵) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) | |
14 | 2, 1, 9, 13 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) ⊆ (2nd ‘𝐵)) |
15 | aptiprlemu 7602 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ 𝐵<P 𝐴) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) | |
16 | 1, 2, 6, 15 | syl3anc 1233 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐴)) |
17 | 14, 16 | eqssd 3164 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (2nd ‘𝐴) = (2nd ‘𝐵)) |
18 | preqlu 7434 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) | |
19 | 18 | 3adant3 1012 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → (𝐴 = 𝐵 ↔ ((1st ‘𝐴) = (1st ‘𝐵) ∧ (2nd ‘𝐴) = (2nd ‘𝐵)))) |
20 | 12, 17, 19 | mpbir2and 939 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ ¬ (𝐴<P 𝐵 ∨ 𝐵<P 𝐴)) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3989 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 Pcnp 7253 <P cltp 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-iltp 7432 |
This theorem is referenced by: aptisr 7741 |
Copyright terms: Public domain | W3C validator |