ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leadd2i GIF version

Theorem leadd2i 8179
Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 11-Aug-1999.)
Hypotheses
Ref Expression
lt2.1 𝐴 ∈ ℝ
lt2.2 𝐵 ∈ ℝ
lt2.3 𝐶 ∈ ℝ
Assertion
Ref Expression
leadd2i (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))

Proof of Theorem leadd2i
StepHypRef Expression
1 lt2.1 . 2 𝐴 ∈ ℝ
2 lt2.2 . 2 𝐵 ∈ ℝ
3 lt2.3 . 2 𝐶 ∈ ℝ
4 leadd2 8106 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)))
51, 2, 3, 4mp3an 1296 1 (𝐴𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1461   class class class wbr 3893  (class class class)co 5726  cr 7540   + caddc 7544  cle 7719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-i2m1 7644  ax-0id 7647  ax-rnegex 7648  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-xp 4503  df-cnv 4505  df-iota 5044  df-fv 5087  df-ov 5729  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724
This theorem is referenced by:  decle  9113
  Copyright terms: Public domain W3C validator